精英家教網 > 初中化學 > 題目詳情
如圖,已知橢圓的焦點和上頂點分別為、、,我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓,判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;
(2)若與橢圓相似且半短軸長為的橢圓為,且直線與橢圓為相交于兩點(異于端點),試問:當面積最大時,是否與有關?并證明你的結論.
(3)根據與橢圓相似且半短軸長為的橢圓的方程,提出你認為有價值的相似橢圓之間的三種性質(不需證明);
見解析.解析:
第一問中利用根據已知的的定義進行判定特征三角形是否相似即可
第二問中,設直線方程,借助于聯立方程組,和韋達定理可以表示斜率之積,然后可知為定植
第三問中,利用類比推理的思想可知兩個相似橢圓之間的性質有:           
兩個相似橢圓的面積之比為相似比的平方;
分別以兩個相似橢圓的頂點為頂點的四邊形也相似,相似比即為橢圓的相似比;
兩個相似橢圓被同一條直線所截得的線段中點重合;
過原點的直線截相似橢圓所得線段長度之比恰為橢圓的相似比
解:(1)由題意可知,橢圓的焦點和上頂點分別為、,我們稱為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比,所以橢圓相似. ………2分
因為的特征三角形是腰長為4,底邊長為的等腰三角形,
而橢圓的特征三角形是腰長為2,底邊長為的等腰三角形,
因此兩個等腰三角形相似,且相似比為2:1                         ……… 4分
(2)橢圓的方程為:.
=與b無關                                 -----------6分
(3)橢圓的方程為:.        
兩個相似橢圓之間的性質有:           
兩個相似橢圓的面積之比為相似比的平方;
分別以兩個相似橢圓的頂點為頂點的四邊形也相似,相似比即為橢圓的相似比;
兩個相似橢圓被同一條直線所截得的線段中點重合;
過原點的直線截相似橢圓所得線段長度之比恰為橢圓的相似比. ---------------6分
練習冊系列答案
相關習題

同步練習冊答案
久久精品免费一区二区视