精英家教網 > 初中數學 > 題目詳情
已知拋物線y=x²-4x+3.
(1)該拋物線的對稱軸是       ,頂點坐標               
(2)將該拋物線向上平移2個單位長度,再向左平移3個單位長度得到新的二次函數圖像,請寫出相應的解析式,并用列表,描點,連線的方法畫出新二次函數的圖像;
x

 
 
 
 
 

y

 
 
 
 
 

 

(3)新圖像上兩點A(x1,y1),B(x2,y2),它們的橫坐標滿足<-2,且-1<<0,試比較y1,y2,0三者的大小關系.
(1)對稱軸是直線x=2,頂點坐標(2,-1);(2)圖象見解析;(3)y1>y2>0.

試題分析:(1)把二次函數解析式整理成頂點式形式,然后寫出對稱軸和頂點坐標即可;
(2)根據向左平移橫坐標減,向上平移縱坐標加求出平移后的頂點坐標,然后利用頂點式形式寫出函數解析式即可,再根據要求作出函數圖象;
(3)根據函數圖象,利用數形結合的思想求解即可.
試題解析:(1)∵y=x2-4x+3=(x-2)2-1,
∴該拋物線的對稱軸是直線x=2,頂點坐標(2,-1);
(2)∵向上平移2個單位長度,再向左平移3個單位長度,
∴平移后的拋物線的頂點坐標為(-1,1),
∴平移后的拋物線的解析式為y=(x+1)2+1,
即y=x2+2x+2,
x

-3
-2
-1
0
1

y

5
2
1
2
5


(3)由圖可知,x1<-2時,y1>2,
-1<x2<0時,1<y2<2,
∴y1>y2>0.
考點: 1.二次函數圖象上點的坐標特征;2.二次函數圖象與幾何變換.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸的一個交點A的坐標為(﹣1,0),對稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個交點B的坐標;
(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.若以AB為一底邊的梯形ABCD的面積為9.
求此拋物線的解析式,并指出頂點E的坐標;
(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設點P運動的時間為t秒.
①當t為   秒時,△PAD的周長最。慨攖為     秒時,△PAD是以AD為腰的等腰三角形?(結果保留根號)
②點P在運動過程中,是否存在一點P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知直線y=kx-3與x軸交于點A(4,0),與y軸交于點C,拋物線經過點A和點C,動點P在x軸上以每秒1個長度單位的速度由拋物線與x軸的另一個交點B向點A運動,點Q由點C沿線段CA向點A運動且速度是點P運動速度的2倍.

(1)求此拋物線的解析式和直線的解析式;
(2)如果點P和點Q同時出發,運動時間為t(秒),試問當t為何值時,以A、P、Q為頂點的三角形與△AOC相似;
(3)在直線CA上方的拋物線上是否存在一點D,使得△ACD的面積最大.若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點,

(1)求出這條拋物線;
(2)求它與x軸的交點和拋物線頂點的坐標;
(3)x取什么值時,拋物線在x軸上方?
(4)x取什么值時,y的值隨x的增大而減?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點A(—2,0),交y軸于點B(0,).直過點A與y軸交于點C,與拋物線的另一個交點是D.

(1)求拋物線與直線的解析式;
(2)設點P是直線AD下方的拋物線上一動點(不與點A、D重合),過點P作 y軸的平行線,交直線AD于點M,作DE⊥y軸于點E.探究:是否存在這樣的點P,使四邊形PMEC是平行四邊形?若存在請求出點P的坐標;若不存在,請說明理由;
(3)在(2)的條件下,作PN⊥AD于點N,設△PMN的周長為m,點P的橫坐標為x,求m與x的函數關系式,并求出m的最大值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

定義:把一個半圓與拋物線的一部分合成封閉圖形,我們把這個封閉圖形稱為“蛋圓”.如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖,A,B,C,D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,8),AB為半圓的直徑,半圓的圓心M的坐標為(1,0),半圓半徑為3.

(1)請你直接寫出“蛋圓”拋物線部分的解析式          ,自變量的取值范圍是          ;
(2)請你求出過點C的“蛋圓”切線與x軸的交點坐標;
(3)求經過點D的“蛋圓”切線的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線經過(0,-1),(3,2)兩點.求它的解析式及頂點坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

二次函數的最小值是(     )
A.1   B.-1  C.3 D.-3

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,在⊙O中,直徑AB=4,CD=,AB⊥CD于點E,點M為線段EA上一個動點,連接CM、DM,并延長DM與弦AC交于點P,設線段CM的長為x,△PMC的面積為y,則下列圖象中,能表示y與x的函數關系的圖象大致是(   )


A.              B.                 C.               D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视