精英家教網 > 初中數學 > 題目詳情

【題目】在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.連接BD,把△ABD繞著點B逆時針旋轉90°得到△EBF,若點F剛好落在DA的延長線上,則∠C=°.

【答案】45
【解析】解:作DH⊥BC于H,如圖,

∵AD∥BC,∠DAB=90°,
∴四邊形ABHD為矩形,
∴BH=AD=1,AB=DH,
∴HC=BC﹣BH=2﹣1=1,
∵△ABD繞著點B逆時針旋轉90°得到△EBF,
∴∠FBD=90°,BF=BD,
∴△BDF為等腰直角三角形,
∵點F剛好落在DA的延長線上,
∴BA⊥DF,
∴AB=AF=AD=1,
∴DH=1,
∴△DHC為等腰直角三角形,
∴∠C=45°.
所以答案是45°.
【考點精析】本題主要考查了旋轉的性質的相關知識點,需要掌握①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算:4sin60°+|3﹣ |﹣( 1+(π﹣2016)0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了維護海洋權益,新組建的國家海洋局加大了在南海的巡邏力度,一天,我兩艘海監船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發現一艘不明國籍的船只停在C處海域.如圖所示,AB=60( + )海里,在B處測得C在北偏東45°的方向上,A處測得C在北偏西30°的方向上,在海岸線AB上有一燈塔D,測得AD=120( - )海里.
(參考數據: =1.41, =1.73, =2.45)

(1)分別求出A與C及B與C的距離AC、BC(結果保留根號)
(2)已知在燈塔D周圍100海里范圍內有暗礁群,我在A處海監船沿AC前往C處盤查,圖中有無觸礁的危險?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是(0,4)、(﹣1,0),將此平行四邊形繞點O順時針旋轉90°,得到平行四邊形A′B′OC′.

(1)若拋物線經過點C、A、A′,求此拋物線的解析式;
(2)點M時第一象限內拋物線上的一動點,問:當點M在何處時,△AMA′的面積最大?最大面積是多少?并求出此時M的坐標;
(3)若P為拋物線上一動點,N為x軸上的一動點,點Q坐標為(1,0),當P、N、B、Q構成平行四邊形時,求點P的坐標,當這個平行四邊形為矩形時,求點N的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市某風景區門票價格如圖所示,百姓旅行社有甲、乙兩個旅行團隊,計劃在“五一”小黃金周期間到該景點游玩,兩團隊游客人數之和為120人,乙團隊人數不超過50人.設甲團隊人數為x人,如果甲、乙兩團隊分別購買門票,兩團隊門票款之和為W元.
(1)求W關于x的函數關系式,并寫出自變量x 的取值范圍;
(2)若甲團隊人數不超過100人,請說明甲、乙兩團隊聯合購票比分別購票最多可節約多少元.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將圓形紙片沿弦AB折疊后,圓弧恰好能經過圓心O,⊙O的切線BC與AO延長線交于點C.
(1)若⊙O半徑為6cm,用扇形OAB圍成一個圓錐的側面,求這個圓錐的底面圓半徑.
(2)求證:AB=BC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C,D在⊙O上,且AD平分∠CAB,過點D作AC的垂線,與AC的延長線相交于點E,與AB的延長線相交于點F.

(1)求證:EF與⊙O相切;
(2)若AB=6,AD=4 ,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,線段AB、CD分別表示甲乙兩建筑物的高,BA⊥AD,CD⊥DA,垂足分別為A、D.從D點測到B點的仰角α為60°,從C點測得B點的仰角β為30°,甲建筑物的高AB=30米

(1)求甲、乙兩建筑物之間的距離AD.
(2)求乙建筑物的高CD.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视