精英家教網 > 初中數學 > 題目詳情

【題目】將如圖所示的牌面數字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上,從中隨機抽取兩張.

(1)用畫樹狀圖或列表的方法,列出抽得撲克牌上所標數字的所有可能組合;
(2)求抽得的撲克牌上的兩個數字之積的算術平方根為有理數的概率.

【答案】
(1)

解:如圖所示:

1

2

3

4

(1,2)

(1,3)

(1,4)

(2,1)

(2,3)

(2,4)

(3,1)

(3,2,)

(3,4)

(4,1)

(4,2)

(4,3)


(2)

解:兩張撲克牌上的數字之積為:2、3、4、2、6、8、3、6、12、4、8、12

算術平方根為: 、2、 、2 、 、 、2、2 、2 ,

∴P(兩張撲克牌上的數字之積的算術平方根為有理數)= =


【解析】解:(1)根據題意,列表如下:

1

2

3

4

1

(1,2)

(1,3)

(1,4)

2

(2,1)

(2,3)

(2,4)

3

(3,1)

(3,2,)

(3,4)

4

(4,1)

(4,2)

(4,3)


【考點精析】解答此題的關鍵在于理解算數平方根的相關知識,掌握正數a的正的平方根叫做a的算術平方根;正數和零的算術平方根都只有一個,零的算術平方根是零,以及對列表法與樹狀圖法的理解,了解當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某蘋果生產基地,用30名工人進行采摘或加工蘋果,每名工人只能做其中一項工作.蘋果的銷售方式有兩種:一種是可以直接出售;另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4000元;加工成罐頭出售每噸獲利10000元.采摘的工人每人可以采摘蘋果0.4噸;加工罐頭的工人每人可加工0.3噸.設有x名工人進行蘋果采摘,全部售出后,總利潤為y元.
(1)求y與x的函數關系式.
(2)如何分配工人才能獲利最大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,F為BC邊上的中點,連接AF交對角線BD于G,在BD上截BE=BA,連接AE,將△ADE沿AD翻折得△ADE′,連接E′C交BD于H,若BG=2,則四邊形AGHE′的面積是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面內直角坐標系中,直線y=2x+4分別交x軸,y軸于點A,C,點D(m,2)在直線AC上,點B在x軸正半軸上,且OB=3OC,點E是y軸上任意一點,記點E為(0,n).

(1)求點D的坐標及直線BC的解析式;
(2)連結DE,將線段DE繞點D按順時針旋轉90°得線段DG,作正方形DEFG,是否存在n的值,使正方形的頂點F落在△ABC的邊上?若存在,求出所有滿足條件的n的值;若不存在,說明理由.
(3)作點E關于AC的對稱點E′,當n為何值時,AE′分別與AC,BC,AB垂直?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC與BD相交于點O,∠CAB=∠ACB,過點B作BE⊥AB交AC于點E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB= ,求線段OE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校數學興趣小組在一次數學課外活動中,隨機抽查該校10名同學參加今年初中學業水平考試的體育成績,得到結果如下表所示:

成績/分

36

37

38

39

40

人數/人

1

2

1

4

2

下列說法正確的是( )
A.這10名同學體育成績的中位數為38分
B.這10名同學體育成績的平均數為38分
C.這10名同學體育成績的眾數為39分
D.這10名同學體育成績的方差為2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣(m﹣3)x﹣m=0
(1)求證:方程有兩個不相等的實數根;
(2)如果方程的兩實根為x1、x2 , 且x12+x22﹣x1x2=7,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料:
在平面直角坐標系xOy中,點P(x0 , y0)到直線Ax+By+C=0的距離公式為:d=
例如:求點P0(0,0)到直線4x+3y﹣3=0的距離.
解:由直線4x+3y﹣3=0知,A=4,B=3,C=﹣3,
∴點P0(0,0)到直線4x+3y﹣3=0的距離為d= =
根據以上材料,解決下列問題:
(1)點P1(3,4)到直線y=﹣ x+ 的距離為;
(2)已知:⊙C是以點C(2,1)為圓心,1為半徑的圓,⊙C與直線y=﹣ x+b相切,求實數b的值;
(3)如圖,設點P為問題2中⊙C上的任意一點,點A,B為直線3x+4y+5=0上的兩點,且AB=2,請求出SABP的最大值和最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算: ﹣3tan30°+(π﹣4)0﹣( 1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视