精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,BD是∠ABC的角平分線,DEBC,交ABE,∠A55°,∠BDC95°,求△BDE各內角的度數.

【答案】BDE=∠DBC40°,∠BED100°

【解析】

根據三角形的一個外角等于與它不相鄰的兩個內角的和列式求出∠ABD,再根據角平分線的定義可得∠DBC=ABD,然后根據兩直線平行,內錯角相等可得∠BDE=DBC,最后利用三角形的內角和定理列式計算求出∠BED

∵∠A55°,∠BDC95°,

∴∠ABD95°55°40°,

BD是∠ABC的角平分線,

∴∠DBC=∠ABD40°,

DEBC,

∴∠BDE=∠DBC40°,

在△BDE中,∠BED180°﹣∠BDE﹣∠ABD180°40°40°100°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O中,AB、AC為互相垂直且相等的兩條弦,則下列說法中正確的有( 。

①點C、O、B一定在一條直線上;②若點E、點D分別是CA、AB的中點,則OE=OD;③若點ECA的中點,連接CO,則△CEO是等腰直角三角形.

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩同學玩托球賽跑游戲,商定:用球拍托乒乓球從起跑線1起跑,繞過點跑回到起跑線(如圖示),途中乒乓球掉下來時須撿起并回到掉球處繼續賽跑,結果:甲同學由于心急,掉了球,浪費了6秒鐘,乙同學則順利跑完;事后,甲同學說:我倆所用的全部時間的和為50,乙同學說撿球過程不算在內時,甲的速度是我的1.2根據圖文信息,求出兩人所用的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖(1)所示,在△ABC中,BD平分∠ABC , CD平分∠ACB,過D點作EFBC,與AB交于點E,與AC交于點F

1)若BE=3,CF=2,求EF的長;

(2)如圖(2)所示,若∠ABC的平分線BD與△ABC的外角∠ACG的平分線CD相交于點D,其它條件不變,請寫出EF,BE,CF之間的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形 ABCD ,ADBC,AB=BC=CD=AD=4,A=C=60°,連接 BD,將BCD 繞點 B 旋轉,當 BD( BD′) AD 交于一點 E,BC(即 BC′)同時與 CD 交于一點 F 時,下列結論正確的是(

①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF 的周長的最小值是4+2

A. ①② B. ②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC為等邊三角形,D為BC延長線上的一點,CE平分ACD,CE=BD,求證:ADE為等邊三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°AC4,BC3,點PAB邊上一動點

當△PCB是等腰三角形時,求AP的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊三角形的頂點A(1,1)、B(3,1),規定把等邊△ABC“先沿y軸翻折,再向下平移1個單位”為一次變換,如果這樣連續經過2020次變換后,等邊△ABC的頂點C的坐標為____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;-1≤a≤-;③對于任意實數m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n-1有兩個不相等的實數根.其中結論正確的個數為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视