精英家教網 > 初中數學 > 題目詳情

【題目】南山植物園中現有A、B兩個園區,已知A園區為長方形,長為(x+y)米,寬為(x﹣y)米;B園區為正方形,邊長為(x+3y)米.

(1)請用代數式表示A、B兩園區的面積之和并化簡;

(2)現根據實際需要對A園區進行整改,長增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區的長比寬多350米,且整改后兩園區的周長之和為980米.

①求x、y的值;

②若A園區全部種植C種花,B園區全部種植D種花,且C、D兩種花投入的費用與吸引游客的收益如表:

求整改后A、B兩園區旅游的凈收益之和.(凈收益=收益﹣投入)

【答案】12x2+6xy;(2②57600元;

【解析】

試題分析:(1)根據長方形的面積公式和正方形的面積公式分別計算A、B兩園區的面積,再相加即可求解;

(2)①根據等量關系:整改后A區的長比寬多350米;整改后兩園區的周長之和為980米;列出方程組求出x,y的值;

②代入數值得到整改后A、B兩園區的面積之和,再根據凈收益=收益﹣投入,列式計算即可求解.

解:(1)(x+y)(x﹣y)+(x+3y)(x+3y)

=x2﹣y2+x2+6xy+9y2

=2x2+6xy+8y2(平方米)

答:A、B兩園區的面積之和為(2x2+6xy)平方米;

(2)(x+y)+(11x﹣y)

=x+y+11x﹣y

=12x(米),

(x﹣y)﹣(x﹣2y)

=x﹣y﹣x+2y

=y(米),

依題意有:

,

解得

12xy=12×30×10=3600(平方米),

(x+3y)(x+3y)

=x2+6xy+9y2

=900+1800+900

=3600(平方米),

(18﹣12)×3600+(26﹣16)×3600

=6×3600+10×3600

=57600(元).

答:整改后A、B兩園區旅游的凈收益之和為57600元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(A2013防城港)如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下: 甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F,連接EF,則四邊形ABEF是菱形.
根據兩人的作法可判斷( 。

A.甲正確,乙錯誤
B.乙正確,甲錯誤
C.甲、乙均正確
D.甲、乙均錯誤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD中,AB=4,BC=5,∠ABC=60°,對角線AC,BD交于點O,過點O作OE⊥AD,則OE等于(
A.
B.2
C.2
D.2.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,E是CD的中點,AE是延長線交BC的延長線于F,分別連接AC,DF,解答下列問題:
(1)求證:△ADE≌△FCE;
(2)若DC平分∠ADF,試確定四邊形ACFD是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】第一中學組織七年級部分學生和老師到蘇州樂園開展社會實踐活動,租用的客車有50座和30座兩種可供選擇.學校根據參加活動的師生人數計算可知:若只租用30座客車x輛,還差5人才能坐滿;

1則該校參加此次活動的師生人數為 (用含x的代數式表示);

2若只租用50座客車,比只租用30座客車少用2輛,求參加此次活動的師生至少有多少人?

3已知租用一輛30座客車往返費用為400元,租用一輛50座客車往返費用為600元,學校根據師生人數選擇了費用最低的租車方案,總費用為2200元,試求參加此次活動的師生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:直線l1與l2相交于點O,對于平面內任意一點M,點M到直線l1、l2的距離分別為p、q,則稱有序實數對(p,q)是點M的“距離坐標”,根據上述定義,“距離坐標”是(1,2)的點的個數是( 。
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,EBC邊上的點,連接AE、DE,將△DEC沿線段DE翻折,點C恰好落在線段AE上的點F處.若AB=6,BE : EC=4 : 1,則線段DE的長為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司需招聘一名員工,對應聘者甲、乙、丙從筆試、面試、體能三個方面進行量化考核.甲、乙、丙各項得分如下表:

85

80

75

80

90

73

83

79

90

(1)根據三項得分的平均分,從高到低確定三名應聘者的排名順序.

(2)該公司規定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分(不計其他因素條件),請你說明誰將被錄用.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC是等邊三角形,點D,E,F分別是邊AB,BC,AC的中點,點M是射線EC上的一個動點,作等邊△DMN,使△DMN與△ABCBC邊同側,連接NF.

(1)如圖1,當點M與點C重合時,直接寫出線段FN與線段EM的數量關系;

(2)當點M在線段EC上(點M與點E,C不重合)時,在圖2中依題意補全圖形,并判斷(1)中的結論是否成立?若成立,請證明;若不成立,請說明理由;

(3)連接DF,直線DM與直線AC相交于點G,若△DNF的面積是△GMC面積的9倍,AB=8,請直接寫出線段CM的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视