【題目】已知:如圖,矩形ABCD中,點E、F分別在DC,AB邊上,且點A、F、C在以點E為圓心,EC為半徑的圓上,連接CF,作EG⊥CF于G,交AC于H.已知AB=6,設BC=x,AF=y.
(1)求證:∠CAB=∠CEG;
(2)①求y與x之間的函數關系式. ②x= 時,點F是AB的中點;
(3)當x為何值時,點F是的中點,以A、E、C、F為頂點的四邊形是何種特殊四邊形?試說明理由.
【答案】(1)證明見解析(2)①y=﹣x2+6②3
(3)2
【解析】
(1)連接EF,由于EG經過圓心E,且與弦CF垂直,由垂徑定理知∠CEF=2∠CEG,而圓周角∠CAF和圓心角∠CEG所對的弧正好相同,由圓周角定理知∠CEG=2∠CAF,由此得證;
(2)①設⊙O的半徑為r,連接EA、EF;由于EA=EF,那么E點在AF的垂直平分線上,因此AF=2DE,即y=2(6﹣r),所以只需求出r、x的關系式即可;Rt△ADE中,AD=x,用r可表示出AE、DE的長,即可由勾股定理求得r、x的關系式,由此得解;②當F是AB中點時,AF=y=3,將其代入①的函數關系式中,即可求得x的值;
(3)當F是弧AC的中點時,EF垂直平分AC,可得AE=EC,AF=FC;易知∠AEF=∠CEF,而∠CEF和∠AFE是平行線的內錯角,等量代換后可得∠AEF=∠AFE=∠FAE,由此可證得△EAF是正三角形,由此可證得四邊形AECF的四邊都相等,即四邊形AECF是菱形;此時∠CFB=∠EAF=60°,在Rt△CFB中,易知BF=CF,而AF=FC,那么BF即為AF的一半、AB的三分之一,由此可求得BF的長,進而可得到BC(即x)的長.
(1)連接EF(如圖1),
∵點A、F、C在以點E為圓心,EC為半徑的圓上,
∴EF=EC,
∵EG⊥CF,
∴∠CEF=2∠CEG,
∵∠CEF=2∠CAB,∴∠CAB=∠CEG;
(2)(如圖2)①連接EF、EA,
設⊙E的半徑為r,
在Rt△ADE中,EA=r,DE=6﹣r,AD=x,
∴x2+(6﹣r)2=r2,r=x2+3,
∵EF=EA,
∴AF=2DE,
即y=2(6﹣r)=﹣x2+6;
②點F是AB的中點時,y=3,即﹣x2+6=3,
∴x=;
(3)(如圖3)
當x=時,F是弧AC的中點.此時四邊形AECF菱形;
理由如下:
∵點F是弧AC的中點,
∴∠AEF=∠CEF,AF=CF,
∵AB∥CD,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF,
∵AE=EF,
∴AE=AF=CE=CF,
∴△AEF和△CEF都是正三角形,
∴四邊形AECF是菱形,且∠CEF=60°,
∴∠BCF=30°,∴BF=CF=
AF=
AB=2,BC=
.
科目:初中數學 來源: 題型:
【題目】2016年12月底我國首艘航空母艦遼寧艦與數艘去驅航艦組成編隊,攜多架殲﹣15艦載戰斗機和多型艦載直升機開展跨海區訓練和試驗任務,在某次演習中,預警直升機A發現在其北偏東60°,距離160千米處有一可疑目標B,預警直升機立即向位于南偏西30°距離40千米處的航母C報告,航母艦載戰斗機立即升空沿北偏東53°方向向可疑目標飛去,請求出艦載戰斗機到達目標的航程BC.
(結果保留整數,參考數據:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3, ≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.
⑴求證:ΔABF≌ΔEDF;
⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點A;
(2)若AE∥BC,BC=2,AC=2
,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)若△ABC和△A1B1C1關于原點O成中心對稱圖形,畫出△A1B1C1;
(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2;
(3)在x軸上存在一點P,滿足點P到點B1與點C1距離之和最小,請直接寫出P B1+ P C1的最小值為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC、BD相交于點O,∠BCD=60°,則下列4個結論:①梯形ABCD是軸對稱圖形;②BC=2AD;③梯形ABCD是中心對稱圖形;④AC平分∠DCB,其中正確的是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD內有一點P,若PA=1,PB=2,PC=3.
(1)畫出△ABP繞點B順時針旋轉90°得到的△CBE;
(2)求∠APB度數;
(3)求正方形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角體系中,直線AB交x軸于點A(5,0),交y軸于點B,AO是⊙M的直徑,其半圓交AB于點C,且AC=3。取BO的中點D,連接CD、MD和OC。
(1)求證:CD是⊙M的切線;
(2)二次函數的圖象經過點D、M、A,其對稱軸上有一動點P,連接PD、PM,求△PDM的周長最小時點P的坐標;
(3)在(2)的條件下,當△PDM的周長最小時,拋物線上是否存在點Q,使?若存在,求出點Q的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在中,
,
,點
在
上,且
.
當點
為線段
的中點,點
、
分別在線段
、
上時(如圖
).過點
作
于點
,請探索
與
之間的數量關系,并說明理由;
當
,
①點、
分別在線段
、
上,如圖
時,請寫出線段
、
之間的數量關系,并給予證明.
②當點、
分別在線段
、
的延長線上,如圖
時,請判斷①中線段
、
之間的數量關系是否還存在.(直接寫出答案,不用證明)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com