【題目】如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個外角. 實驗與操作:
根據要求進行尺規作圖,并在圖中標明相應字母(保留作圖痕跡,不寫作法)
(1)作∠DAC的平分線AM;
(2)作線段AC的垂直平分線,與AM交于點F,與BC邊交于點E,連接AE,CF.猜想并證明: 判斷四邊形AECF的形狀并加以證明.
【答案】
(1)解:如圖所示
(2)四邊形AECF的形狀為菱形.理由如下:
∵AB=AC,
∴∠ABC=∠ACB,
∵AM平分∠DAC,
∴∠DAM=∠CAM,
而∠DAC=∠ABC+∠ACB,
∴∠CAM=∠ACB,
∴EF垂直平分AC,
∴OA=OC,∠AOF=∠COE,
在△AOF和△COE中
,
∴△AOF≌△COE,
∴OF=OE,
即AC和EF互相垂直平分,
∴四邊形AECF的形狀為菱形
【解析】先作以個角的交平分線,再作線段的垂直平分線得到幾何圖形,由AB=AC得∠ABC=∠ACB,由AM平分∠DAC得∠DAM=∠CAM,則利用三角形外角性質可得∠CAM=∠ACB,再根據線段垂直平分線的性質得OA=OC,∠AOF=∠COE,于是可證明△AOF≌△COE,所以OF=OE,然后根據菱形的判定方法易得四邊形AECF的形狀為菱形.
科目:初中數學 來源: 題型:
【題目】嘉淇準備完成題目:化簡:,發現系數“
”印刷不清楚.
(1)他把“”猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯了,我看到該題標準答案的結果是常數.”通過計算說明原題中“”是幾?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】實驗數據顯示,一般成人喝半斤低度白酒后,1.5小時內其血液中酒精含量y(毫克/百毫升)與時間x(時)的關系可近似地用二次函數y=﹣200x2+400x刻畫;1.5小時后(包括1.5小時)y與x可近似地用反比例函數y= (k>0)刻畫(如圖所示).
(1)根據上述數學模型計算: ①喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?
②當x=5時,y=45,求k的值.
(2)按國家規定,車輛駕駛人員血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數學模型,假設某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知邊長為a的正方形的面積為8,則下列說法中,錯誤的是( )
A.a是無理數
B.a是方程x2﹣8=0的一個解
C.a是8的算術平方根
D.a滿足不等式組
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),頂點坐標為(1,n),與y軸的交點在(0,2)、(0,3)之間(包含端點),則下列結論: ①當x>3時,y<0;②3a+b>0;③﹣1≤a≤﹣ ;④3≤n≤4中,
正確的是( )
A.①②
B.③④
C.①④
D.①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A在反比例函數y=﹣ (x<0)的圖象上移動,連接OA,作OB⊥OA,并滿足∠OAB=30°.在點A的移動過程中,追蹤點B形成的圖象所對應的函數表達式為( )
A.y= (x>0)
B.y= (x>0)
C.y= (x>0)
D.y= (x>0)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com