【題目】如圖,直線y=﹣x+3與x軸,y軸分別交于B,C兩點,拋物線y=ax2+bx+c過A(1,0),B,C三點.
(1)求拋物線的解析式;
(2)若點M是拋物線在x軸下方圖形上的動點,過點M作MN∥y軸交直線BC于點N,求線段MN的最大值.
(3)在(2)的條件下,當MN取得最大值時,在拋物線的對稱軸l上是否存在點P,使△PBN是以BN為腰的等腰三角形?若存在,求出點P的坐標,若不存在,請說明理由.
【答案】
(1)
解:由題意點A(1,0)、B(3,0)、C(0,3)代入拋物線y=ax2+bx+c中,
得: ,解得:
,
∴拋物線的解析式為y=x2﹣4x+3.
(2)
解:設點M的坐標為(m,m2﹣4m+3),設直線BC的解析式為y=kx+3,
把點點B(3,0)代入y=kx+3中,
得:0=3k+3,解得:k=﹣1,
∴直線BC的解析式為y=﹣x+3.
∵MN∥y軸,
∴點N的坐標為(m,﹣m+3).
∵拋物線的解析式為y=x2﹣4x+3=(x﹣2)2﹣1,
∴拋物線的對稱軸為x=2,
∴點(1,0)在拋物線的圖象上,
∴1<m<3.
∵線段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣ )2+
,
∴當m= 時,線段MN取最大值,最大值為
.
(3)
解:假設存在.設點P的坐標為(2,n).
當m= 時,點N的坐標為(
,
),
∴PB= =
,PN=
,BN=
=
.
△PBN為等腰三角形分三種情況:
①當PB=BN時,即 =
,
解得:n=± ,
此時點P的坐標為(2,﹣ )或(2,
).
②當PN=BN時,即 =
,
解得:n= ,
此時點P的坐標為(2, )或(2,
).
綜上可知:在拋物線的對稱軸l上存在點P,使△PBN是等腰三角形,點P的坐標為(2,﹣ )或(2,
)或(2,
)或(2,
).
【解析】(1)由點A、B、C的坐標利用待定系數法即可求出拋物線的解析式;(2)設出點M的坐標以及直線BC的解析式,由點B、C的坐標利用待定系數法即可求出直線BC的解析式,結合點M的坐標即可得出點N的坐標,由此即可得出線段MN的長度關于m的函數關系式,再結合點M在x軸下方可找出m的取值范圍,利用二次函數的性質即可解決最值問題;(3)假設存在,設出點P的坐標為(2,n),結合(2)的結論可求出點N的坐標,結合點N、B的坐標利用兩點間的距離公式求出線段PN、PB、BN的長度,根據等腰三角形的性質分類討論即可求出n值,從而得出點P的坐標.
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結論: ①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④ <a<
⑤b>c.
其中含所有正確結論的選項是( )
A.①③
B.①③④
C.②④⑤
D.①③④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,A(a,0)、B(b,0)且a、b滿足|a+4|+=0
①求a、b的值;
②若C(﹣6,0),連CB,作BE⊥CB,垂足為B,且BC=BE,連AE交y軸于P,求P點坐標;
(2)如圖2,若A(6,0),B(0,3),點Q從A出發,以每秒1個單位的速度沿射線AO勻速運動,設點Q運動時間為t秒,過Q點作直線AB的垂線,垂足為D,直線QD與y軸交于E點,在點Q的運動過程中,一定存在△EOQ≌△AOB,請直接寫出存在的t值以及相應的E點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A1、A2、A3、…在射線ON上,點B1、B2、B3、…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4、…均為等邊三角形,若OA1=1,則△A9B9A10的邊長為( 。
A. 32 B. 64 C. 128 D. 256
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 , …按如圖所示放置,點A1 , A2 , A3 , 和點C1 , C2 , C3 , …,分別在直線y=kx+b(k>0)和x軸上,已知點B1 , B2 , B3 , B4的坐標分別為(1,1)(3,2),(7,4),(15,8),則Bn的坐標是( )
A.(2n﹣1,2n﹣1)
B.(2n , 2n﹣1)
C.(2n﹣1 , 2n)
D.(2n﹣1﹣1,2n﹣1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等邊△ABC外作射線AD,使得AD和AC在直線AB的兩側,∠BAD=α(0°<α<180°),點B關于直線AD的對稱點為P,連接PB,PC.
(1)依題意補全圖1;
(2)在圖1中,求△BPC的度數;
(3)直接寫出使得△PBC是等腰三角形的α的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市購進一批文具袋,每個進價為10元.試銷售期間,記錄的每天的銷售數量與銷售單價的數據如下表:
銷售單價x(元 | 11 | 12 | 13 | 14 | 15 | … |
銷售數量y(個) | 38 | 36 | 34 | 32 | 30 | … |
備注:物價局規定,每個文具袋的售價不低于10元且不高于18元 |
請你根據表中信息解答下列問題:
(1)y是x的函數,其函數關系式為
(2)營業員發現有一天的利潤是150元,則銷售單價為元.
(3)試銷售的目的是想要每天獲得最大的銷售利潤.請你幫助銷售經理計算一下,在這種情況下單價x(元)應定為多少時,每天的銷售利潤w(元)最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設a1=22-02,a2=32-12,…,an=(n+1)2-(n-1)2(n為大于1的整數)
(1)計算a15的值;
(2)通過拼圖你發現前三個圖形的面積之和與第四個正方形的面積之間有什么關系:
__________________________________(用含a、b的式子表示);
(3)根據(2)中結論,探究an=(n+1)2-(n-1)2是否為4的倍數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com