【題目】有理數a,b,c在數軸上的位置如圖所示,請根據圖中信息,回答下列問題:
(1)a,b,c三個數中,為正數的數是 ,為負數的數是 ;
(2)將|a|,|b|,|c|三個數用不等號“<”連接起來是 ;
(3)化簡:|b﹣a|﹣|b+c|.
【答案】(1)b;c、a;(2)|b|<|a|<|c|;(3)2b﹣a+c.
【解析】
(1)根據數軸的定義,原點左邊的數是負數,右邊的數是正數;
(2)利用絕對值的代數意義即可判定;
(3)先根據數軸確定出正負,然后去掉絕對值符號,再進行計算即可求解.
(1)a,b,c三個數中,為正數的數是b,為負數的數是c和a.
故答案為:b;c、a;
(2)∵c離原點最遠,b離原點最近,
∴將|a|,|b|,|c|三個數用不等號“<”連接起來是|b|<|a|<|c|.
故答案為:|b|<|a|<|c|.
(3)∵b﹣a>0,b+c<0,
∴|b﹣a|﹣|b+c|
=b﹣a﹣(﹣b﹣c)
=b﹣a+b+c
=2b﹣a+c.
科目:初中數學 來源: 題型:
【題目】已知△ABC中,AB=AC,過B點作射線BE,過C點作射線CF,使∠ABE=∠ACF,且射線BE,CF交于點D,過A點作AM⊥BD于M.
⑴如圖1所示,若BE⊥CF,AB=6,∠ABE=30°,求CD;
⑵如圖2所示,求證:BM=DM﹣DC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC、BD相交于點O,且OA=OB
(1)求證:四邊形ABCD是矩形;
(2)若AB=5,∠AOB=60°,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2011貴州安順,17,4分)已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,則P點的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,正方形ABCD中,點E,F分別在邊BC,CD上,∠EAF=45°,延長CD到點G,使DG=BE,連結EF,AG。求證:①∠BEA =∠G,② EF=FG。
(2)如圖2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在解決數學問題的過程中,我們常用到“分類討論”的數學思想,下面是運用分類討論的數學思想解決問題的過程,請仔細閱讀,并解答題目后提出的“探究”.
(提出問題)三個有理數a、b、c滿足abc>0,求的值.
(解決問題)由題意得:a,b,c三個有理數都為正數或其中一個為正數,另兩個為負數.
①當a,b,c都是正數,即a>0,b>0,c>0時,
則:=
=1+1+1=3;
②當a,b,c有一個為正數,另兩個為負數時,設a>0,b<0,c<0,
即:=
=1+(1)+(1)=1,所以
的值為3或1.
(探究)請根據上面的解題思路解答下面的問題:
(1)已知a<0,b>0,c>0,則 ,
,
;
(2)三個有理數a,b,c滿足abc<0,求的值;
(3)已知|a|=3,|b|=1,且a<b,求a+b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在學習了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據你所學的知識,回答下列問題:
(1)小明總共剪開了_______條棱.
(2)現在小明想將剪斷的②重新粘貼到①上去,而且經過折疊以后,仍然可以還原成一個長方體紙盒,你認為他應該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補全.
(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下圖的數陣是由全體奇數排成:
(1)圖中平行四邊形框內的九個數之和與中間的數有什么關系?
(2)在數陣圖中任意作一類似(1)中的平行四邊形框,這九個數之和還有這種規律嗎?請說出理由;
(3)這九個數之和能等于1998嗎?2005,1017呢?若能,請寫出這九個數中最小的一個;若不能,請說出理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,點F為BE的中點,連接CF,DF.
(1)如圖1,當點D在AB上,點E在AC上時
①證明:△BFC是等腰三角形;
②請判斷線段CF,DF的關系?并說明理由;
(2)如圖2,將圖1中的△ADE繞點A旋轉到圖2位置時,請判斷(1)中②的結論是否仍然成立?并證明你的判斷.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com