分析 作ED∥AC交BC于D,根據平行線的性質得到∠BDE=∠ACB,∠GED=∠F,∠EDG=∠FCG,由等腰三角形的性質得到∠B=∠ACB,等量代換得到∠B=∠BDE,于是得到BE=ED,推出△GED≌△CFG,根據全等三角形的性質得到GH=GC,根據等腰三角形的性質得到BF=FH,等量代換即可得到結論.
解答 解:作EH∥AC交BC于H,
∴∠BHE=∠ACB,∠GEH=∠D,∠EHG=∠DCG,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠BHE,
∴BE=EH.
∵CD=BE,
∴CD=HE.
在△GEH和△CDG中,
$\left\{\begin{array}{l}{∠GEH=∠D}\\{HE=CD}\\{∠EHG=∠DCG}\end{array}\right.$,
∴△GEH≌△CDG(ASA),
∴GH=GC,
∵BE=EH,EF⊥BH,
∴BF=FH,
∴GH+FH=CG+BF=FG,
∴BC=2FG.
點評 本題考查了等腰三角形的性質的運用,平行線的性質的運用,全等三角形的判定和性質的運用,解答時證明三角形全等是關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com