【題目】已知二次函數y=ax2+bx+c的圖象如圖所示,有以下結論:①abc>0,②a﹣b+c<0,③2a+b=0,④b2﹣4ac>0,其中正確結論個數是( )
A.1 B.2 C.3 D.4
科目:初中數學 來源: 題型:
【題目】某公司投資1200萬元購買了一條新生產線生產新產品.根據市場調研,生產每件產品需要成本50元,該產品進入市場后不得低于80元/件且不得超過160元/件,該產品銷售量y(萬件)與產品售價x(元)之間的關系如圖所示.
(1)求y與x之間的函數關系式,并寫出x的取值范圍;
(2)第一年公司是盈利還是虧損?求出當盈利最大或虧損最小時的產品售價;
(3)在(2)的前提下,即在第一年盈利最大或者虧損最小時,公司第二年重新確定產品售價,能否使前兩年盈利總額達790萬元?若能,求出第二年產品售價;若不能,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,O是斜邊AB的中點,點D、E分別在直角邊AC、BC上,且∠DOE=90°,DE交OC于點P,則下列結論:①圖中全等的三角形只有兩對;②△ABC的面積等于四邊形CDOE面積的2倍;③OD=OE;④CE+CD=BC,其中正確的結論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 任意兩個等腰三角形都相似 B. 任意兩個菱形都相似
C. 任意兩個正五邊形都相似 D. 對應角相等的兩個多邊形相似
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,直線AB與x軸負半軸、y軸正半軸分別交于A、B兩點,OA、OB的長度分別為a和b,且滿足a2﹣2ab+b2=0.
(1)判斷△AOB的形狀;
(2)如圖②,△COB和△AOB關于y軸對稱,D點在AB上,點E在BC上,且AD=BE,試問:線段OD、OE是否存在某種確定的數量關系和位置關系?寫出你的結論并證明;
(3)將(2)中∠DOE繞點O旋轉,使D、E分別落在AB,BC延長線上(如圖③),∠BDE與∠COE有何關系?直接說出結論,不必說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com