精英家教網 > 初中數學 > 題目詳情

已知二次函數y=x2–kx+k–1(k>2).

(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個交點;
(2)拋物線與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,若,求拋物線的表達式;
(3)以(2)中的拋物線上一點P(m,n)為圓心,1為半徑作圓,直接寫出:當m取何值時,x軸與相離、相切、相交.

(1)證明見解析;
(2)拋物線的表達式為;
(3)當時,x軸與相離.
時,x軸與相切.
時,x軸與相交.

解析試題分析:(1)要證明二次函數的圖象與x軸都有兩個交點,證明二次函數的判別式是正數即可解決問題;
(2)根據函數解析式求出A、B、C點坐標,再由,求出函數解析式;
(3)先求出當時,x軸與相切,再寫出相離與相交.
試題解析:(1)∵,
又∵,
.
.
∴拋物線y=x2–kx+k-1與x軸必有兩個交點;
(2)∵拋物線y=x2–kx+k-1與x軸交于A、B兩點,
∴令,有.
解得:.
,點A在點B的左側,
.
∵拋物線與y軸交于點C,
.
∵在Rt中,,
,解得.
∴拋物線的表達式為;
(3)解:當時,x軸與相離.
時,x軸與相切.
時,x軸與相交.
考點:二次函數綜合.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點D、E、F分別是邊AB,BC,AC的中點,連接DE,DF,動點P,Q分別從點A、B同時出發,運動速度均為1cm/s,點P沿AFD的方向運動到點D停止;點Q沿BC的方向運動,當點P停止運動時,點Q也停止運動.在運動過程中,過點Q作BC的垂線交AB于點M,以點P,M,Q為頂點作平行四邊形PMQN.設平行四邊形邊形PMQN與矩形FDEC重疊部分的面積為y(cm2)(這里規定線段是面積為0有幾何圖形),點P運動的時間為x(s)

(1)當點P運動到點F時,CQ=          cm;
(2)在點P從點F運動到點D的過程中,某一時刻,點P落在MQ上,求此時BQ的長度;
(3)當點P在線段FD上運動時,求y與x之間的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知二次函數y=x2﹣2mx+4m﹣8(1)當x≤2時,函數值y隨x的增大而減小,求m的取值范圍.(2)以拋物線y=x2﹣2mx+4m﹣8的頂點A為一個頂點作該拋物線的內接正三角形AMN(M,N兩點在拋物線上),請問:△AMN的面積是與m無關的定值嗎?若是,請求出這個定值;若不是,請說明理由.(3)若拋物線y=x2﹣2mx+4m﹣8與x軸交點的橫坐標均為整數,求整數m的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元.則每個月少賣10件(每件售價不能高于65元).設每件商品的售價上漲元(為正整數),每個月的銷售利潤為元.
(1)求與的函數關系式并直接寫出自變量的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)每件商品的售價定為多少元時,每個月的利潤恰為2200元?根據以上結論,請你直接寫出售價在什么范圍時,每個月的利潤不低于2200元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

在平面直角坐標系中,矩形OABC過原點O,且A(0,2)、C(6,0),∠AOC的平分線交AB于點D.
(1)直接寫出點B的坐標;
(2)如圖,點P從點O出發,以每秒個單位長度的速度沿射線OD方向移動;同時點Q從點O出發,以每秒2個單位長度的速度沿軸正方向移動.設移動時間為秒.

①當t為何值時,△OPQ的面積等于1;
②當t為何值時,△PQB為直角三角形;
(3)已知過O、P、Q三點的拋物線解析式為y=-(x-t)2+t(t>0).問是否存在某一時刻t,將△PQB繞某點旋轉180°后,三個對應頂點恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知二次函數y=ax2+bx+c的圖象的頂點為M(2,1),且過點N(3,2).

(1)求這個二次函數的關系式;
(2)若一次函數y=-x-4的圖象與x軸交于點A,與y軸交于點B,P為拋物線上的一個動點,過點P作PQ∥y軸交直線AB于點Q,以PQ為直徑作圓交直線AB于點D.設點P的橫坐標為n,問:當n為何值時,線段DQ的長取得最小值?最小值為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商人如果將進貨價為8元的商品按每件10元出售,每天可銷售100件,現采用提高售出價,減少進貨量的辦法增加利潤,已知這種商品每漲價1元其銷售量就要減少10件,問他將售出價x定為多少元時,才能使每天所賺的利潤y 最大?并求出最大利潤。

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在平面直角坐標系中,頂點為(4,1)的拋物線交軸于點,交軸于,兩點(點在點的左側),已知點坐標為(6,0).

(1)求此拋物線的解析式;
(2)聯結AB,過點作線段的垂線交拋物線于點,如果以點為圓心的圓與拋物線的對稱軸相切,先補全圖形,再判斷直線與⊙的位置關系并加以證明;
(3)已知點是拋物線上的一個動點,且位于,兩點之間.問:當點運動到什么位置時,的面積最大?求出的最大面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商人如果將進貨價為8元的商品按每件10元出售,每天可銷售100件,現采用提高售出價,減少進貨量的辦法增加利潤,已知這種商品每漲價1元其銷售量就要減少10件,問他將售出價定為多少元時,才能使每天所賺的利潤最大?并求出最大利潤.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视