【題目】如圖1,在等邊△ABC中,點D是BC邊的中點,點P為AB邊上的一個動點,設,圖1中線段DP的長為
,若表示
與
的函數關系的圖象如圖2所示,則等邊△ABC的面積為_____.
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AC是弦(不是直徑),OD⊥AC垂足為G交⊙O于D,E為⊙O上一點(異于A、B),連接ED交AC于點F,過點E的直線交BA、CA的延長線分別于點P、M,且ME=MF.
(1)求證:PE是⊙O的切線.
(2)若DF=2,EF=8,求AD的長.
(3)若PE=6,sin∠P=
,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為2的正方形BCD中,動點F、E分別以相同的速度從D、C兩點同時出發向C和B運動(任何一個點到達即停止),過點P作PM∥CD交BC于M點,PN∥BC交CD于N點,連接MN,在運動過程中,下列結論:①△ABE≌△BCF;②AE⊥BF;③CF2=PEBF;④線段MN的最小值為﹣1.其中正確的結論有_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為( 。
A. 10B. 8C. 14D. 13
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是△ABC的邊BC的中線,E是AD的中點,過點A作AF∥BC,交BE的延長線于點F,連接CF,BF交AC于G.
(1)若四邊形ADCF是菱形,試證明△ABC是直角三角形;
(2)求證:CG=2AG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠ACD=90°,AC=DC,MN是過點A的直線,過點D作DB⊥MN于點B,連接CB.
(1)問題發現
如圖①過點C作CE⊥CB,與MN交于點E,則易發現BD和EA之間的數量關系為 ;BD、AB、CB之間的數量關系為 .
(2)拓展探究
當MN繞點A旋轉到如圖②位置時,BD、AB、CB之間滿足怎樣的數量關系?請寫出你的猜想,并證明.
(3)解決問題
當MN繞點A旋轉到如圖③位置時(點C,D在直線MN兩側),若此時∠BCD=30°,BD=2,則CB= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將拋物線y1=x2﹣2x﹣3先向左平移1個單位,再向上平移4個單位后,與拋物線y2=ax2+bx+c重合,現有一直線y3=2x+3與拋物線y2=ax2+bx+c相交.當y2≤y3時自變量x的取值范圍是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠BAD=,求AD的長;
(3)試探究FB、FD、FA之間的關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)觀察猜想
如圖①點B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數量關系為;
(2)問題解決
如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結BD,求BD的長;
(3)拓展延伸
如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com