【題目】如圖,點E在△ABC外部,點D在邊BC上,DE交AC于點F.若∠1=∠2=∠3,AC=AE,求證△ABC≌△ADE.
【答案】證明過程見解析
【解析】試題分析:要想證明△ABC≌△ADE,全等的條件,∵∠1=∠2=∠3,
∴∠2+∠DAC=∠1+∠DAC,∴∠BAC=∠DAE,又∵∠DFC=∠AFE,∠3=∠1,
∴在△ADE和△ABC中,由三角形的內角和定理得∠3+∠C+∠DFC=∠1+∠E+∠AFE,
∵∠DFC=∠AFE,∴∠C=∠E,又已知AD=AB,∴△ABC≌△ADE(AAS)
試題解析: (1)由三角形的內角和定理△AEF與△DCF中,
∵∠2=∠3,∠AFE=∠CFD, ∴∠C=∠E;∵∠1=∠2, ∠BAC=∠1+∠DAC,
∠DAE=∠2+∠DAC ∴∠BAC=∠DAE 又∵AC=AE, ∴△ABC≌△ADE(ASA)
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B,C重合),現將△PCD沿直線PD折疊,使點C落下點C1處;作∠BPC1的平分線交AB于點E.設BP=x,BE=y,那么y關于x的函數圖象大致應為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校260名學生參加植樹活動,要求每人植4﹣7棵,活動結束后隨機抽查了20名學生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵,將各類的人數繪制成扇形圖(如圖1)和條形圖(如圖2).
回答下列問題:
(1)補全條形圖;
(2)寫出這20名學生每人植樹量的眾數、中位數;
(3)請你計算平均數,并估計這260名學生共植樹多少棵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場經營A種品牌的玩具,購進時間的單價是30元,但據市場調查,在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>40),請用含x的代數式表示該玩具的銷售量;
(2)若玩具廠規定該品牌玩具銷售單價不低于44元,且商場要完成不少于450件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
(3)該商場計劃將(2)中所得的利潤的一部分資金采購一批B種玩具并轉手出售,根據市場調查并準備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付他庫保管費350元,請問商場如何使用這筆資金,采用哪種方案獲利較多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB∥CD,CE、BE的交點為E,現作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點為E3,…,
第n次操作,分別作∠ABEn﹣1和∠DCEn﹣1的平分線,交點為En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了讓市民樹立起“珍惜水、節約水、保護水”的用水理念,某市從今年4月起,居民生活用水按階梯式計算水價,水價計算方式如下表所示,每噸水還需另加污水處理費0.80元.已知小張家今年4月份用水20噸,交水費49元;5月份用水25噸,交水費65.4元.(友情提示:水費=水價+污水處理費)
用水量 | 水價(元/噸) |
不超過20噸 | m |
超過20噸且不超過30噸的部分 | n |
超過30噸的部分 | 2m |
(1)求m、n的值;
(2)隨著夏天的到來,用水量將激增.為了節省開支,小張計劃把6月份的水費控制在不超過家庭月收入的2%.若小張家的月收入為8190元,則小張家6月份最多能用水多少噸?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com