【題目】兩個反比例函數y= (k>1)和y=
在第一象限內的圖象如圖所示,點P在y=
的圖象上,PC⊥x軸于點C,交y=
的圖象于點A,PD⊥y軸于點D,交y=
的圖象于點B,BE⊥x軸于點E,當點P在y=
圖象上運動時,以下結論:①BA與DC始終平行;②PA與PB始終相等;③四邊形PAOB的面積不會發生變化;④△OBA的面積等于四邊形ACEB的面積.其中一定正確的是(填序號)
【答案】①③④
【解析】解:設點P的坐標為(m, ),則點A(m,
),點C(m,0),點B(
,
),點D(0,
), ∴PB=m﹣
=
,PD=m,PA=
﹣
=
,PD=m,PC=
,
∵ =
,
=
=
,
∴BA∥DC,①成立;
∵PB= ,PA=
,
∴當m2=k時,PA=PB,②不成立;
S矩形OCPD=k,S△OBD= ,S△OAC=
,
S四邊形PAOB=S矩形OCPD﹣S△OBD﹣S△OBD=k﹣1,
∵k為固定值,
∴③成立;
S梯形BECA= (AC+BE)EC=
(
+
)(m﹣
)=
,S△OBA=S四邊形PAOB﹣S△PAB=k﹣1﹣
(m﹣
)(
﹣
)=
,
∴S梯形BECA=S△OBA , ④成立.
綜上可知:一定正確的為①③④.
所以答案是:①③④.
【考點精析】本題主要考查了反比例函數的性質和比例系數k的幾何意義的相關知識點,需要掌握性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減小; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大;幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖1,點E為矩形ABCD邊AD上一點,點P,點Q同時從點B出發,點P沿BE→ED→DC 運動到點C停止,點Q沿BC運動到點C停止,它們運動的速度都是1cm/s,設P,Q出發t秒時,△BPQ的面積為ycm,已知y與t的函數關系的圖形如圖2(曲線OM為拋物線的一部分),則下列結論:①AD=BE=5cm;②當0<t≤5時,;③直線NH的解析式為
;④若△ABE與△QBP相似,則t=
秒。其中正確的結論個數為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分別繞直線AB,CD旋轉一周,所得幾何體的表面積分別為S1 , S2 , 則|S1﹣S2|=(平方單位)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E,F分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩個反比例函數y= (k>1)和y=
在第一象限內的圖象如圖所示,點P在y=
的圖象上,PC⊥x軸于點C,交y=
的圖象于點A,PD⊥y軸于點D,交y=
的圖象于點B,BE⊥x軸于點E,當點P在y=
圖象上運動時,以下結論:①BA與DC始終平行;②PA與PB始終相等;③四邊形PAOB的面積不會發生變化;④△OBA的面積等于四邊形ACEB的面積.其中一定正確的是(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面上,七個邊長為1的等邊三角形,分別用①至⑦表示(如圖).從④⑤⑥⑦組成的圖形中,取出一個三角形,使剩下的圖形經過一次平移,與①②③組成的圖形拼成一個正六邊形
(1)你取出的是哪個三角形?寫出平移的方向和平移的距離;
(2)將取出的三角形任意放置在拼成的正六邊形所在平面,問:正六邊形沒有被三角形蓋住的面積能否等于 ?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com