【題目】問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
問題探究:不妨假設能搭成種不同的等腰三角形,為探究
之間的關系,我們可以從特殊入手,通過試驗、觀察、類比,最后歸納、猜測得出結論.
探究一:
(1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
此時,顯然能搭成一種等腰三角形。所以,當時,
(2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形
所以,當時,
(3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形
所以,當時,
(4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形
所以,當時,
綜上所述,可得表①
3 | 4] | 5 | 6 | |
1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?
(仿照上述探究方法,寫出解答過程,并把結果填在表②中)
(2)分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三
角形?(只需把結果填在表②中)
7 | 8 | 9 | 10 | |
你不妨分別用11根、12根、13根、14根相同的木棒繼續進行探究,……
解決問題:用根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(設分別等于
、
、
、
,其中
是整數,把結果填在表③中)
問題應用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)其中面積最大的等腰三角形每個腰用了__________________根木棒。(只填結果)
【答案】(1)、若分成1根木棒、1根木棒和5根木棒,則不能搭成三角形;若分為2根木棒、2根木棒和3根木棒,則能搭成一種等腰三角形;若分為3根木棒、3根木棒和1根木棒,則能搭成一種等腰三角形;(2)、表格見解析;應用:(1)、503;(2)、672.
【解析】
試題分析:(1)、根據給出的解題方法得出答案;(2)、根據題意將表格填寫完整;應用:(1)、根據題意得出k的值,從而得出三角形的個數;根據三角形的性質得出答案.
試題解析:探究二
(1)、若分成1根木棒、1根木棒和5根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和3根木棒,則能搭成一種等腰三角形
若分為3根木棒、3根木棒和1根木棒,則能搭成一種等腰三角形
(2)、所以,當時,
7 | 8 | 9 | 10 | ||
2 | 1 | 2 | 2 | ||
| |||||
問題應用:(1)、∵2016=4×504 所以k=504, 則可以搭成k-1=503個不同的等腰三角形;
(2)、 672
科目:初中數學 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】地球的平均半徑約為6 371 000米,該數字用科學記數法可表示為( )
A.0.6371×107
B.6.371×106
C.6.371×107
D.6.371×103
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com