精英家教網 > 初中數學 > 題目詳情
18、如圖a是長方形紙帶,∠DEF=24°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數是
108°

分析:根據長方形紙條的特征---對邊平行,利用平行線的性質和翻折不變性求出∠2=∠EFG,繼而求出∠GFC的度數,再減掉∠GFE即可得∠CFE的度數.
解答:解:延長AE到G,由于紙條是長方形,
∴EH∥GF,
∴∠1=∠EFG,
根據翻折不變性得∠1=∠2,
∴∠2=∠EFG,
又∵∠DEF=24°,
∴∠2=∠EFG=24°,
∠FED=24°+24°=48°.
在梯形FCDG中,
∠GFC=180°-48°=132°,
根據翻折不變性,∠CFE=∠GFC-∠GFE=132°-24°=108°.
點評:此題考查了翻折變換,要充分利用長方形紙條的性質和翻折不變性解題.從變化中找到不變量是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

10、如圖a是長方形紙帶,∠DEF=25°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數是
105
°.

查看答案和解析>>

科目:初中數學 來源: 題型:

8、如圖a是長方形紙帶,∠DEF=20°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖a是長方形紙帶,∠DEF=10°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的tan∠DHF的度數是( 。
精英家教網
A、
2
2
B、
3
3
C、1
D、
3

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖a是長方形紙帶,∠DEF=19°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠DHF的度數是
57°
57°

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视