【題目】如圖,已知∠ABC=90°,△ABE是等邊三角形,點P為射線BC上任意一點(點P與點B不重合),連接AP,將線段AP繞點A逆時針旋轉60°得到線段AQ,連接QE并延長交射線BC于點F.
(1)如圖,當BP=BA時,∠EBF=______°,猜想∠QFC =______°;
(2)如圖,當點P為射線BC上任意一點時,猜想∠QFC的度數,并加以證明.
(3)已知線段AB=,設BP=x,點Q到射線BC的距離為y,求y關于x的函數關系式.
【答案】(1)∠EBF=30°; ∠QFC=60°;(2)∠QFC=60°.(3)(x>0).
【解析】試題分析:(1)∠EBF與∠ABE互余,而∠ABE=60°,即可求得∠EBF的度數;利用觀察法,或量角器測量的方法即可求得∠QFC的度數;
(2)根據三角形的外角等于不相鄰的兩內角的和,證明∠BAP=∠EAQ,進而得到△ABP≌△AEQ,證得∠AEQ=∠ABP=90°,則∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,∠QFC=∠EBF+∠BEF;
(3)過點F作FG⊥BE于點G,過點Q作QH⊥BC,根據△ABP≌△AEQ得到:設QE=BP=x,則QF=QE+EF=x+2.點Q到射線BC的距離y=QH=sin60°×QF=(x+2),即可求得函數關系式.
試題解析:(1)∵∠ABC=90°,∠BAE=60°,
∴∠EBF=30°;
則猜想:∠QFC=60°;
(2)∠QFC=60°.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ
在△ABP和△AEQ中,
,
∴△ABP≌△AEQ (SAS)
∴∠AEQ=∠ABP=90°
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,
∴∠QFC=∠EBF+∠BEF=30°+30°=60°;
(3)在圖1中,過點F作FG⊥BE于點G,過點Q作QH⊥BC于點H,
∵△ABE是等邊三角形,
∴BE=AB=,
由(1)得∠EBF=30°,在Rt△BGF中,
∴FG=2,BF=4,∴EF=BF=4,
∵△ABP≌△AEQ,∴QE=PB=x,∴QF=QE+EF=x+4,
由(2)得∠QFC=60°,∴在Rt△QHF中,∠FQH=30°
即y關于x的函數關系式是:(x>0)
.
科目:初中數學 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有兩個相等的實數根;
④拋物線與x軸的另一個交點是(-1,0);
⑤當1<x<4時,有y2<y1,
其中正確的是( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,梯形AOBC的邊OB在x軸的正半軸上,AC∥OB,BC⊥OB,過點A的雙曲線的一支在第一象限交梯形對角線OC于點D,交邊BC于點E.(1)填空:雙曲線的另一支在第_____象限,k的取值范圍是_____;
(2)若點C的坐標為(2,2),當點E在什么位置時?陰影部分面積S最?
(3)若,
=2,求雙曲線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩家綠化養護公司各自推出了校園綠化養護服務的收費方案.
甲公司方案:每月的養護費用y(元)與綠化面積x(平方米)是一次函數關系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數解析式;(不要求寫取值范圍)
(2)如果某學校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務,每月的綠化養護費用較少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校240名學生參加植樹活動,要求每人植樹4~7棵,活動結束后抽查了20名學生每人的植樹量,并分為四類:A類4棵、B類5棵、C類6棵、D類7棵,將各類的人數繪制成如圖所示不完整的條形統計圖,回答下列問題:
(1)補全條形圖;
(2)寫出這20名學生每人植樹量的眾數和中位數;
(3)估計這240名學生共植樹多少棵?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com