【題目】如圖,在中
,
于點
,
于點
,
為
邊的中點,連接
,則下列結論:①
,②
,③
為等邊三角形,④當
時,
.請將正確結論的序號填在橫線上__.
【答案】①③④
【解析】
①根據直角三角形斜邊上的中線等于斜邊的一半可判斷①;
②先證明△ABM∽△ACN,再根據相似三角形的對應邊成比例可判斷②;
③先根據直角三角形兩銳角互余的性質求出∠ABM=∠ACN=30°,再根據三角形的內角和定理求出∠BCN+∠CBM=60°,然后根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據有一個角是60°的等腰三角形是等邊三角形可判斷③;
④當∠ABC=45°時,∠BCN=45°,進而判斷④.
①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,
∴PM=BC,PN=
BC,
∴PM=PN,正確;
②在△ABM與△ACN中,
∵∠A=∠A,∠AMB=∠ANC=90°,
∴△ABM∽△ACN,
∴,錯誤;
③∵∠A=60°,BM⊥AC于點M,CN⊥AB于點N,
∴∠ABM=∠ACN=30°,
在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,
∵點P是BC的中點,BM⊥AC,CN⊥AB,
∴PM=PN=PB=PC,
∴∠BPN=2∠BCN,∠CPM=2∠CBM,
∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,
∴∠MPN=60°,
∴△PMN是等邊三角形,正確;
④當∠ABC=45°時,∵CN⊥AB于點N,
∴∠BNC=90°,∠BCN=45°,
∵P為BC中點,可得BC=PB=
PC,故④正確.
所以正確的選項有:①③④
故答案為:①③④
科目:初中數學 來源: 題型:
【題目】某農場學校積極開展陽光體育活動,組織了九年級學生定點投籃,規定每人投籃3次.現對九年級(1)班每名學生投中的次數進行統計,繪制成如下的兩幅統計圖,根據圖中提供的信息,回答下列問題.
(1)求出九年級(1)班學生人數;
(2)補全兩個統計圖;
(3)求出扇形統計圖中3次的圓心角的度數;
(4)若九年級有學生200人,估計投中次數在2次以上(包括2次)的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,②,在平面直角坐標系xoy中,點A的坐標為(4,0),以點A為圓心,4為半徑的圓與x軸交于O,B兩點,OC為弦, , P是x軸上的一動點,連結CP。
(1)求的度數;
(2)如圖①,當CP與⊙A相切時,求PO的長;
(3)如圖②,當點P在直徑OB上時,CP的延長線與⊙A相交于點Q,問PO為何值時,是等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是( 。
A. ∠ABD=∠C B. ∠ADB=∠ABC C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖△ABC三個頂點的坐標分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網格中,每個小正方形的邊長是1個單位長度.
(1)畫出△ABC向上平移6個單位得到的△A1B1C1;
(2)以點C為位似中心,在網格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點A2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】包河區發展農業經濟產業,在大圩鄉種植多品種的葡萄.已知某葡萄種植戶李大爺的葡萄成本為10元,如果在未來40天葡萄的銷售單價
(元
)與時間
(天)之間的函數關系式為:
,且葡萄的日銷售量
(千克)與時間
(天)的關系如下表:
時間 | 1 | 3 | 6 | 10 | 20 | 40 |
日銷售量 | 118 | 114 | 108 | 100 | 80 | 40 |
(1)請直接寫出與
之間的變化規律符合什么函數關系?并求在第15天的日銷售量是多少千克?
(2)在后20天(即),請求出哪一天的日銷售利潤最大?日銷售利潤最大為多少?
(3)在實際銷售的前20天中,李大爺決定每銷售1千克水果就捐贈元利潤(
)給留守貧困兒童作為助學金,前20天銷售完后李大爺發現,每天扣除捐贈后的日銷售利潤隨時間
的增大而增大,請求出
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某小組做“用頻率估計概率”的實驗時,統計了某一結果出現的頻率,繪制了如圖的折線統計圖,則符合這一結果的實驗最有可能的是
A. 在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
B. 暗箱中有1個紅球和2個黃球,它們只有顏色上的區別,從中任取一球是黃球
C. 擲一個質地均勻的正六面體骰子,向上的面點數是4
D. 擲一枚一元硬幣,落地后正面朝上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一條城際鐵路從A市到B市需要經過C市,A市位于C市西南方向,與C市相距40在千米,B市恰好位于A市的正東方向和C市的南偏東60°方向處.因打造城市經濟新格局需要,將從A市到B市之間鋪設一條筆直的鐵路,求新鋪設的鐵路AB的長度.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC,AB于點E,F.
(1)試判斷直線BC與⊙O的位置關系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結果保留π).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com