【題目】如圖,在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=2 ,D是BC的中點,將△OCD沿直線OD折疊后得到△OGD,延長OG交AB于點E,連接DE,則點G的坐標為 .
【答案】( ,
)
【解析】解:過點G作GF⊥OA于點F,如圖所示.
∵點D為BC的中點,
∴DC=DB=DG,
∵四邊形OABC是矩形,
∴AB=OC,OA=BC,∠C=∠OGD=∠ABC=90°.
在Rt△DGE和Rt△DBE中, ,
∴Rt△DGE≌Rt△DBE(HL),
∴BE=GE.
設AE=a,則BE=3﹣a,DE= =
,OG=OC=3,
∴OE=OG++GE,即 =3+3﹣a,
解得:a=1,
∴AE=1,OE=5.
∵GF⊥OA,EA⊥OA,
∴GF∥EA,
∴ ,
∴OF= =
=
,GF=
=
=
,
∴點G的坐標為( ,
).
故答案為:( ,
).
本題考查了翻折變換、矩形的性質、全等三角形的判定及性質以及平行線的性質,解題的關鍵是求出線段AE的長度.本題屬于中檔題,難度不大,解決該題型題目時,利用勾股定理得出邊與邊之間的關系是關鍵.過點G作GF⊥OA于點F,根據全等直角三角形的判定定理(HL)證出Rt△DGE≌Rt△DBE,從而得出BE=GE,根據勾股定理可列出關于AE長度的方程,解方程可得出AE的長度,再根據平行線的性質即可得出比例關系 ,代入數據即可求出點G的坐標.
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+mx+m﹣4經過點A(5,﹣5),若拋物線頂點為P.
(1)求點P的坐標;
(2)在直線OA上方的拋物線上任取一點M,連接MO、MA,求△MOA的面積取得最大時的點M坐標;
(3)如圖1,將原拋物線沿射線OP方向進行平移得到新的拋物線,新拋物線與射線OP交于C、D兩點.試問線段CD的長度是否為定值,若是請求出這個定值;若不是請說明理由.(提示:若點C(x1 , y1),D(x2 , y2),則CD的長度d= )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的面積為3cm2 , E為BC邊上一點,∠BAE=30°,F為AE的中點,過點F作直線分別與AB,DC相交于點M,N.若MN=AE,則AM的長等于 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點C在線段AB上,點M、N分別是AC、BC的中點.(10分)
(1)若AC=8,CB=6,求線段MN的長;
(2)若點C為線段AB上任意一點,且滿足AC+BC=a,請直接寫出線段MN的長;
(3)若點C為線段AB延長線上任意一點,且滿足AC-CB=b,求線段MN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在某商店購買商品A、B共兩次,這兩次購買商品A、B的數量和費用如表:
購買商品A的數量(個) | 購買商品B的數量(個) | 購買總費用(元) | |
第一次購物 | 4 | 3 | 93 |
第二次購物 | 6 | 6 | 162 |
若小麗需要購買3個商品A和2個商品B,則她要花費( )
A.64元
B.65元
C.66元
D.67元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優惠,優勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.
(1)求一次至少購買多少只計算器,才能以最低價購買?
(2)求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數關系式,并寫出自變量x的取值范圍;
(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發現賣46只賺的錢反而比賣50只賺的錢多,請你說明發生這一現象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD交于點O,CE平分∠BCD交AB于點E,交BD于點F,且∠ABC=60°,AB=2BC,連接OE.下列結論:
①∠ACD=30°;②SABCD=ACBC;③OE:AC= :6;④S△OCF=2S△OEF
成立的個數有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,圖形是一種重要的數學語言,它直觀形象,能有效地表現一些代數中的數量關系,對幾何圖形做出代數解釋和用幾何圖形的面積表示代數恒等式是互逆的.課本上由拼圖用幾何圖形的面積來驗證了乘法公式,一些代數恒等式也能用這種形式表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用圖①或圖②等圖形的面積表示.
(1)填一填:請寫出圖③所表示的代數恒等式:______________________________;
(2)畫一畫:試畫出一個幾何圖形,使它的面積能表示:(a+b)(a+3b)=a2+4ab+3b2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小源的父母決定中考之后帶她去旅游,初步商量有意向的四個景點分別為:A.明月山,B.廬山,C.婺源,D.三清山.由于受到時間限制,只能選兩個景點,于是小源的父母決定通過抽簽選擇,用四張小紙條分別寫上四個景點做成四個簽(外表無任何不同),讓小源隨機抽兩次,每次抽一個簽,每個簽抽到的機會相等.
(1)小源最希望去婺源,則小源第一次恰好抽到婺源的概率是多少;
(2)除婺源外,小源還希望去明月山,求小源抽到婺源、明月山兩個景點中至少一個的概率是多少.(通過“畫樹狀圖”或“列表”進行分析)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com