【題目】定義:如圖1,點C在線段AB上,若滿足AC2=BCAB,則稱點C為線段AB的黃金分割點.如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于點D.
(1)求證:點D是線段AC的黃金分割點;
(2)求出線段AD的長.
【答案】(1)證明:∵AB=AC=1,
∴∠ABC=∠C=(180°﹣∠A)=
(180°﹣36°)=72°,
∵BD平分∠ABC交AC于點D,
∴∠ABD=∠CBD=∠ABC=36°,
∴∠BDC=180°﹣36°﹣72°=72°,
∴DA=DB,BD=BC,
∴AD=BD=BC,
易得△BDC∽△ABC,
∴BC:AC=CD:BC,即BC2=CDAC,
∴AD2=CDAC,
∴點D是線段AC的黃金分割點;
(2)設AD=x,則CD=AC﹣AD=1﹣x,
∵AD2=CDAC,
∴x2=1﹣x,解得x1=,x2=-
,
即AD的長為.
【解析】(1)利用等腰三角形的性質和三角形內角和定理可計算出∠ABC=∠C=72°,∠ABD=∠CBD=36°,∠BDC=72°,則可得到AD=BD=BC,然后根據相似三角形的判定方法易得△BDC∽△ABC,利用相似比得到BC2=CDAC,于是有AD2=CDAC,則可根據線段黃金分割點的定義得到結論;
(2)設AD=x,則CD=AC﹣AD=1﹣x,由(1)的結論得到x2=1﹣x,然后解方程即可得到AD的長.
【考點精析】關于本題考查的黃金分割,需要了解把線段AB分成兩條線段AC,BC(AC>BC),并且使AC是AB和BC的比例中項,叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點,其中AC=0.618AB才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】觀察下列等式:
第1個等式:a1= =
﹣1,
第2個等式:a2= =
﹣
,
第3個等式:a3= =2﹣
,
第4個等式:a4= =
﹣2,
按上述規律,回答以下問題:
(1)請寫出第n個等式:an=;
(2)a1+a2+a3+…+an= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是單位1,△ABC在平面直角坐標系中的位置如圖所示.
(1)將△ABC繞點O順時針方向旋轉90°后得△A1B1C1 , 畫出△A1B1C1并直接寫出點C1的坐標為多少?
(2)以原點O為位似中心,在第四象限畫一個△A2B2C2 , 使它與△ABC位似,并且△A2B2C2與△ABC的相似比為2:1.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了預防流感,某學校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒后,y與x成反比例(如圖),現測藥物8分鐘燃畢,此時空氣中每立方米含藥量為6毫克,請根據題中所提供的信息,回答下列問題
(1)藥物燃燒時,y關于x的函數關系式為,自變量x的取值范圍是;藥物燃燒完后,y與x的函數關系式為;
(2)研究表明,當空氣中的每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經過幾分鐘后,學生才能回到教室;
(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續時間不低于10分鐘時,才能有效地殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分別以點A,B為圓心,大于線段AB長度一半的長為半徑作弧,相交于點E,F,過點E,F作直線EF,交AB于點D,連結CD,則CD的長是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,對稱軸為直線x= 的拋物線經過B(2,0)、C(0,4)兩點,拋物線與x軸的另一交點為A
(1)求拋物線的解析式;
(2)若點P為第一象限內拋物線上的一點,設四邊形COBP的面積為S,求S的最大值;
(3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點,與y軸交于點C,其頂點為點D,點E的坐標為(0,﹣1),該拋物線與BE交于另一點F,連接BC.
(1)求該拋物線的解析式,并用配方法把解析式化為y=a(x﹣h)2+k的形式;
(2)若點H(1,y)在BC上,連接FH,求△FHB的面積;
(3)一動點M從點D出發,以每秒1個單位的速度平沿行與y軸方向向上運動,連接OM,BM,設運動時間為t秒(t>0),在點M的運動過程中,當t為何值時,∠OMB=90°?
(4)在x軸上方的拋物線上,是否存在點P,使得∠PBF被BA平分?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com