【題目】某天小明騎自行車上學,途中因自行車發生故障,修車耽誤了一段時間后繼續騎行,按時趕到了學校,如圖所示是小明從家到學校這一過程中所走的路程 s(米)與時間 t(分)之間的關系.
(1)小明從家到學校的路程共 米,從家出發到學校,小明共用了 分鐘;
(2)小明修車用了多長時間?
(3)小明修車以前和修車后的平均速度分別是多少?
【答案】(1)2000米,20分鐘;(2)5;(3) 100(m/min),200(m/min)
【解析】
(1)根據縱軸的最大值為2000,可得出學校離家的距離為2000米;根據橫軸的最大值為20,可得出小明到達學校時共用時間20分鐘;
(2)用15-10可求出修車時間
(3)根據速度=路程÷時間,分別求出修車前、后的平均速度.
(1)∵縱軸的最大值為2000,∴學校離家的距離為2000米.
∵橫軸的最大值為20,∴小明到達學校時共用時間20分鐘
(2)15-10=5(分鐘),小明修車用了5分鐘.
(3)修車前的騎行平均速度為1000÷10=100(米/分鐘),
修車后的騎行平均速度為(2000-1000)÷(20-15)=200(米/分鐘)
科目:初中數學 來源: 題型:
【題目】★若兩個扇形滿足弧長的比等于它們半徑的比,則稱這兩個扇形相似.如圖,如果扇形AOB與扇形A1O1B1是相似扇形,且半徑OA∶O1A1=k(k為不等于0的常數).那么下面四個結論:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③=k;④扇形AOB與扇形A1O1B1的面積之比為k2.成立的個數為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于E,過點E作EG⊥AC于G,交BC的延長線于F.
(1)求證:AE=BE;
(2)求證:FE是⊙O的切線;
(3)若FE=4,FC=2,求⊙O的半徑及CG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示的一塊地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,則這塊地的面積為( 。┢椒矫祝
A. 96 B. 204 C. 196 D. 304
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象分別與x軸,y軸的正半軸分別交于點A,B,AB=2,∠OAB=45°
(1)求一次函數的解析式;
(2)如果在第二象限內有一點C(a,);試用含有a的代數式表示四邊形ABCO的面積,并求出當△ABC的面積與△ABO的面積相等時a的值;
(3)在x軸上,是否存在點P,使△PAB為等腰三角形?若存在,請直接寫出所有符合條件的點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國家規定,中小學生每天在校體育活動時間不低于1小時,為了解這項政策的落實情況,有關部門就“你某天在校體育活動時間是多少”的問題,在某校隨機抽查了部分學生,再根據活動時間t(小時)進行分組(A組:t<0.5,B組:0.5≤t<1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統計圖,請根據圖中信息回答問題:
(1)此次抽查的學生數為 人;
(2)補全條形統計圖;
(3)從抽查的學生中隨機詢問一名學生,該生當天在校體育活動時間低于1小時的概率是 ;
(4)若當天在校學生數為1200人,請估計在當天達到國家規定體育活動時間的學生有 人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(點A在點B的左側),點A的坐標為(﹣1,0),與y軸交于點C(0,3),作直線BC.動點P在x軸上運動,過點P作PM⊥x軸,交拋物線于點M,交直線BC于點N,設點P的橫坐標為m.
(1)求拋物線的解析式和直線BC的解析式;
(2)當點P在線段OB上運動時,若△CMN是以MN為腰的等腰直角三角形時,求m的值;
(3)當以C、O、M、N為頂點的四邊形是以OC為一邊的平行四邊形時,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班舉行了“慶祝建黨98周年知識競賽”活動,班長安排張小明購買獎品,如圖兩幅圖是張小明買回獎品時與班長的對話情況:
請根據圖1、圖2的信息,解答下列問題:
(1)張小明買了兩種筆記本各多少本?(要求列一元一次方程解決問題)
(2)為什么班長說不可能找回68元錢,請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com