精英家教網 > 初中數學 > 題目詳情

【題目】已知某開發區有一塊四邊形的空地ABCD,如圖所示,現計劃在空地上種植草皮,經測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問要多少投入?

【答案】7200元

【解析】試題分析:仔細分析題目,需要求得四邊形的面積才能求得結果.連接BD,在直角三角形ABD中可求得BD的長,由BD、CD、BC的長度關系可得三角形DBC為一直角三角形,DC為斜邊;由此看,四邊形ABCDRt△ABDRt△DBC構成,則容易求解.

試題解析:連接BD,


RtABD中,BD2=AB2+AD2=32+42=52
在△CBD中,CD2=132BC2=122
122+52=132,
BC2+BD2=CD2,
∴∠DBC=90°
S四邊形ABCD=SBAD+SDBC=ADAB+DBBC,
=×4×3+×12×5=36
所以需費用36×200=7200(元).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,C為線段AB延長線上一點,D為線段BC上一點,CD2BD,E為線段AC上一點,CE2AE

(1)AB18BC21,求DE的長;

(2)ABa,求DE的長;(用含a的代數式表示)

(3)若圖中所有線段的長度之和是線段AD長度的7倍,則的值為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:

(1)-24×;

(2)-9+5×(-6)-(-4)2÷(-8);

(3)0.25×(-2)2-[4÷+1]+(-1)2018;

(4)-42÷-[].

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖17Z10是由邊長為1的小正方形組成的網格

(1)求四邊形ABCD的面積;

(2)你能判斷ADCD的位置關系嗎?說出你的理由

17Z10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,B=45°BC=10 cm,過點AADBC,且點D在點A的右側.點P從點A出發沿射線AD方向以每秒1cm的速度運動,同時點Q從點C出發沿射線CB方向以每秒2cm的速度運動,在線段QC上取點E,使得QE =2cm,連結PE,設點P的運動時間為t秒.

1)若PEBC,則①PE= cm,CE= 用含t的式子表示)

②求BQ的長;

2)請問是否存在t的值,使以A,B,EP為頂點的四邊形為平行四邊形?若存在,求出t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點P是BC上的一點.

(1)請寫出圖中∠1的一對同位角,一對內錯角,一對同旁內角;

(2)求∠EFC與∠E的度數;

(3)若∠BFP=46°,請判斷CE與PF是否平行?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】嘉淇同學要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.

已知:如圖1,在四邊形ABCD中,BC=AD,AB=

求證:四邊形ABCD 四邊形.

(1)在方框中填空,以補全已知和求證;

(2)按嘉淇同學的思路寫出證明過程;

(3)用文字敘述所證命題的逆命題.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把正方形ABCD繞點C按順時針方向旋轉45°得到正方形A′B′CD′(此時,點B′落在對角線AC上,點A′落在CD的延長線上),A′B′交AD于點E,連接AA′、CE.
求證:

(1)△ADA′≌△CDE;
(2)直線CE是線段AA′的垂直平分線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規定時間內完成若乙隊單獨施工,則完成工程所需天數是規定天數的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規定時間是多少天?

2)已知甲隊每天的施工費用為6500,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视