【題目】陳先生駕車從杭州到上海,要經過一段高速公路,假設汽車在高速公路上勻速行駛,記行駛時間為t小時,速度為v千米/小時,如果陳先生駕車速度為90千米/小時,2小時可以通過高速公路.
(1)求v與t的函數表達式.
(2)高速公路的速度限定為不超過120千米/小時,陳先生計劃10:00駛入高速,11:48前駕駛離開高速公路,求它的駕車速度v的取值范圍.
科目:初中數學 來源: 題型:
【題目】紅旗連鎖超市準備購進甲、乙兩種綠色袋裝食品.甲、乙兩種綠色袋裝食品的進價和售價如表.已知:用2000元購進甲種袋裝食品的數量與用1600元購進乙種袋裝食品的數量相同.
甲 | 乙 | |
進價(元/袋) | ||
售價(元/袋) | 20 | 13 |
(1)求的值;
(2)要使購進的甲、乙兩種綠色袋裝食品共800袋的總利潤(利潤=售價-進價)不少于4800元,且不超過4900元,問該超市有幾種進貨方案?
(3)在(2)的條件下,該超市如果對甲種袋裝食品每袋優惠元出售,乙種袋裝食品價格不變.那么該超市要獲得最大利潤應如何進貨?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC在平面直角坐標系內,三個頂點的坐標分別為A(0,3),B(4,5),C(3,2).(正方形網格中,每個小正方形的邊長都是1個單位長度)
(1)畫出△ABC向下平移5個單位長度得到的,并直接寫出點
的坐標;
(2)以點B為位似中心,在網格中畫出,使
與
位似,且相似比為2∶1,并直接寫出
的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,的斜邊
在直線
上,且
是
的中點,點
的坐標為
.點
在線段
上從
點向
點運動,同時點
在線段
上從
點向
點運動,且
.
(1)求的長及點
的坐標.
(2)作交
于點
,作
交
于點
,連結
,
,設
.
①在,
相遇前,用含
的代數式表示
的長.
②當為何值時,
與坐標軸垂直.
(3)若交
軸于點
,除點
與點
重合外,
的值是否為定值,若是,請直接寫出
的值,若不是,請直接寫出它的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點,EG⊥AF,FH⊥CE,垂足分別為G,H,設AG=x,圖中陰影部分面積為y,則y與x之間的函數關系式是( 。
A. y=3x2 B. y=4
x2 C. y=8x2 D. y=9x2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與
軸的正半軸交于點
.
(1)求點的坐標和該拋物線的對稱軸.
(2)點在
軸的正半軸上,
軸交拋物線于點
、
(點
在點
的左側),設
,
①當是
的中點時,求
的值;
②連結,設
與
的周長之差為
,求
關于
的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數與反比例函數
的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數的解析式;
(2)求的面積;
(3)根據圖象直接寫出的x的取值范圍
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車分別從兩地同時出發,沿同一條公路相向行駛,相遇后,甲車繼續以原速行駛到
地,乙車立即以原速原路返回到
地,甲、乙兩車距
地的路程
與各自行駛的時間
之間的關系如圖所示.
⑴________,
________;
⑵求乙車距地的路程
關于
的函數解析式,并寫出自變量
的取值范圍;
⑶當甲車到達地時,求乙車距
地的路程
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com