【題目】下圖為水平放置于桌面上的臺燈的示意圖,已知燈臂AB=18cm,燈罩BC=30cm,∠BAM=60°,∠ABC=90°,求點C到桌面的距離CD(精確到0.1cm).參考數據:≈1.41,
≈1.73.
【答案】點C到桌面的距離CD約為30.6 cm.
【解析】
過點B作BE⊥CD于E,過點A作AF⊥BE于點F,根據題意可得∠FBA=∠BAM=60°,∠CBE=30°,在Rt△ABF中,根據,求得AF,在Rt△BCE中,根據
,求得CE,然后根據CD=CE+DE=CE+AF即可得解.
如圖,過點B作BE⊥CD于E,過點A作AF⊥BE于點F,
∵AD∥BE,
∴∠FBA=∠BAM=60°,
∵∠ABC=90°,
∴∠CBE=90°-∠FBA=30°,
在Rt△ABF中,
∵,
∴=18
,
在Rt△BCE中,
∵,
∴=30
=15,
∴CD=CE+DE=CE+AF=
(cm).
答:點C到桌面的距離CD約為30.6 cm.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,A、B兩個頂點在軸的上方,點C的坐標是(1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,設點B的對應點B′的橫坐標是a,則點B的橫坐標是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結論:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④點M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2<﹣1,則y1>y2,⑤abc>0.其中正確結論的個數是( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一艘輪船在A處測得燈塔P位于其東北方向上,輪船沿正東方向航行30海里到達B處后,此時測得燈塔P位于其北偏東30°方向上,此時輪船與燈塔P的距離是( 。┖@铮
A. 15+15 B. 30
+30 C. 45+15
D. 60
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,C、D是以AB為直徑的⊙O上的點,,弦CD交AB于點E.
(1)當PB是⊙O的切線時,求證:∠PBD=∠DAB;
(2)求證:BC2﹣CE2=CEDE;
(3)已知OA=4,E是半徑OA的中點,求線段DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下圖為水平放置于桌面上的臺燈的示意圖,已知燈臂AB=18cm,燈罩BC=30cm,∠BAM=60°,∠ABC=90°,求點C到桌面的距離CD(精確到0.1cm).參考數據:≈1.41,
≈1.73.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某課桌生產廠家研究發現,傾斜12°~24°的桌面有利于學生保持軀體自然姿勢.根據這一研究,廠家決定將水平桌面做成可調節角度的桌面.新桌面的設計圖如圖1,AB可繞點A旋轉,在點C處安裝一根可旋轉的支撐臂CD,AC=30 cm.
(1)如圖2,當∠BAC=24°時,CD⊥AB,求支撐臂CD的長;
(2)如圖3,當∠BAC=12°時,求AD的長.(結果保留根號)
(參考數據:sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標為A(-2,3),B(-3,2),C(-1,1).
(1)若將△ABC向右平移3個單位長度,再向上平移1個單位長度,請畫出平移后的△A1B1C1;
(2)畫出△A1B1C1繞原點旋轉180°后得到的△A2B2C2;
(3)△A'B'C'與△ABC是位似圖形,請寫出位似中心的坐標:______;
(4)順次連接C,C1,C',C2,所得到的圖形是軸對稱圖形嗎?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com