【題目】某商場將進貨價為30元的臺燈以40元的價格售出,平均每月能售出600個,經調查表明,這種臺燈的售價每上漲1元,其銷量就減少10個,市場規定此臺燈售價不得超過60元.
(1)為了實現銷售這種臺燈平均每月10000元的銷售利潤,售價應定為多少元?
(2)若商場要獲得最大利潤,則應上漲多少元?
科目:初中數學 來源: 題型:
【題目】如圖,AB與⊙O相切于點C,OA、OB分別交⊙O于點D、E、弧CD=弧CE
(1)求證:∠A=∠B.
(2)已知AC=2,OA=4,求陰影部分的面積.(結果保留根號和π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果關于的一元二次方程
(
)有兩個不相等的實數根,且其中一個根為另一個根的2倍,那么稱這樣的方程為“倍根方程”,例如,方程
的兩個根是2和4,則方程
就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,則
______;
(2)若(
)是“倍根方程”,求代數式
的值;
(3)若方程(
)是倍根方程,且相異兩點
,
,都在拋物線
上,求一元二次方程
(
)的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉90°后得Rt△FOE,將線段EF繞點E逆時針旋轉90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線與
軸交于
、
兩點,與
軸交于點
,其頂點為點
,點
的坐標為(0,-1),該拋物線與
交于另一點
,連接
.
(1)求該拋物線的解析式,并用配方法把解析式化為的形式;
(2)若點在
上,連接
,求
的面積;
(3)一動點從點
出發,以每秒1個單位的速度沿平行于
軸方向向上運動,連接
,
,設運動時間為
秒(
>0),在點
的運動過程中,當
為何值時,
?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y1=x+4的圖象與反比例函數y2=的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求k.
(2)根據圖象直接寫出y1>y2時,x的取值范圍.
(3)若反比例函數y2=與一次函數y1=x+4的圖象總有交點,求k的取值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1,則下列結論①abc>0②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3③4a+2b+c<0④當x>0時,y隨x的增大而減小正確的是( 。
A.①③④B.②④C.①②③D.②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規定,該種玩具每件利潤不能超過60元),每天可售出50件.根據市場調查發現,銷售單價每增加2元,每天銷售量會減少1件.設銷售單價增加元,每天售出
件.
(1)請寫出與
之間的函數表達式;
(2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?
(3)設超市每天銷售這種玩具可獲利元,當
為多少時
最大,最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知等邊△ABC,點D為BC上一點,連接AD.
圖1 圖2
(1)若點E是AC上一點,且CE=BD,連接BE,BE與AD的交點為點P,在圖(1)中根據題意補全圖形,直接寫出∠APE的大。
(2)將AD繞點A逆時針旋轉120°,得到AF,連接BF交AC于點Q,在圖(2)中根據題意補全圖形,用等式表示線段AQ和CD的數量關系,并證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com