我市開發區是全國聞名的電動車生產基地,某電動車制造廠開發了一款新式電動汽車,計劃一年生產安裝240輛。由于抽調不出足夠的熟練工來完成新式電動汽車的安裝,工廠決定招聘一些新工人;他們經過培訓后上崗,也能獨立進行電動汽車的安裝。生產開始后,調研部門發現:1名熟練工和2名新工人每月可安裝8輛電動汽車;2名熟練工和3名新工人每月可安裝14輛電動汽車。
(1)每名熟練工和新工人每月分別可以安裝多少輛電動汽車?
(2)如果工廠招聘n(0<n<10)名新工人,使得招聘的新工人和抽調的熟練工剛好能完成一年的安裝任務,那么工廠有哪幾種新工人的招聘方案?
(3)在(2)的條件下,工廠給安裝電動汽車的每名熟練工每月發2000元的工資,給每名新工人每月發1200元的工資,那么工廠應招聘多少名新工人,使新工人的數量多于熟練工,同時工廠每月支出的工資總額W(元)盡可能的少?
(1) 每名熟練工和新工人每月分別可以安裝x、y輛電動汽車,根據題意可列方程,解得
答:每名熟練工和新工人每月分別可以安裝4、2輛電動汽車.
(2)設需熟練工m名,依題意有:2n×12+4m×12=240,n=10-2m
∵0<n<10∴0<m<5故有四種方案:(n為新工人)
m=1時,n=8,即抽調1名熟練工時,需招聘8名新工人;
m=2時,n=6,即抽調2名熟練工時,需招聘6名新工人;
m=3時,n=4,即抽調3名熟練工時,需招聘4名新工人;
m=4時,n=2,即抽調4名熟練工時,需招聘2名新工人.
(3)依題意有 W=1200n+(5-)×2000="200" n+10000,要使新工人的數量多于熟練工,滿足n=4、6、8,故當n=4時,W有最小值=10800元
解析
科目:初中數學 來源:2011-2012學年河南商丘數學考前統一模擬數學試卷(解析版) 題型:解答題
我市開發區是全國聞名的電動車生產基地,某電動車制造廠開發了一款新式電動汽車,計劃一年生產安裝240輛。由于抽調不出足夠的熟練工來完成新式電動汽車的安裝,工廠決定招聘一些新工人;他們經過培訓后上崗,也能獨立進行電動汽車的安裝。生產開始后,調研部門發現:1名熟練工和2名新工人每月可安裝8輛電動汽車;2名熟練工和3名新工人每月可安裝14輛電動汽車。
(1)每名熟練工和新工人每月分別可以安裝多少輛電動汽車?
(2)如果工廠招聘n(0<n<10)名新工人,使得招聘的新工人和抽調的熟練工剛好能完成一年的安裝任務,那么工廠有哪幾種新工人的招聘方案?
(3)在(2)的條件下,工廠給安裝電動汽車的每名熟練工每月發2000元的工資,給每名新工人每月發1200元的工資,那么工廠應招聘多少名新工人,使新工人的數量多于熟練工,同時工廠每月支出的工資總額W(元)盡可能的少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com