【題目】一組管道如圖1所示,其中四邊形ABCD是矩形,O是AC的中點,管道由AB,BC,CD,DA,OA,OB,OC,OD組成,在BC的中點M 處放置了一臺定位儀器.一個機器人在管道內勻速行進,對管道進行檢測.設機器人行進的時間為x,機器人與定位儀器之間的距離為y,表示y與x的函數關系的圖象大致如圖2所示,則機器人的行進路線可能為( )
A.A→O→D
B.B→O→D
C.A→B→O
D.A→D→O
【答案】C
【解析】解:(A)若行進路線為A→O→D,則起點和終點與定位儀器之間的距離y都是最遠,不符合圖2,故(A)錯誤;
(B)若行進路線為B→O→D,則終點與定位儀器之間的距離y最遠,不符合圖2,故(B)錯誤;
(C)若行進路線為A→B→O,則距離先變小,再變小,最后又變大,符合圖2,故(C)正確;
(D)若行進路線為A→D→O,則終點與定位儀器之間的距離y最小,不符合圖2,故(D)錯誤.
故選C
【考點精析】利用函數的圖象對題目進行判斷即可得到答案,需要熟知函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值.
科目:初中數學 來源: 題型:
【題目】已知△ABC的三邊長分別為6cm , 7.5cm , 9cm , △DEF的一邊長為4cm , 當△DEF的另兩邊長是下列哪一組時,這兩個三角形相似( 。
A.2 cm,3 cm
B.4 cm,5 cm
C.5 cm,6 cm
D.6 cm,7 cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數圖象如圖所示,根據圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數關系式;
(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一張直角三角形紙片,記作△ABC,其中∠B=90°.按如圖方式剪去它的一個角(虛線部分),在剩下的四邊形ADEC中,若∠1=165°,則∠2的度數為°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,點E在CB的延長線上,連接AC,AE,∠ACB=∠BAE=45°
(1)求證:AE是⊙O的切線;
(2)若 AB=AD,AC=2 ,tan∠ADC=3,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在五邊形ABCDE中,∠B=90°,AB=BC=CD=1,AB∥CD,M是CD邊的中點,點P由點A出發,按A→B→C→M的順序運動.設點P經過的路程x為自變量,△APM的面積為y,則函數y的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是某公園一塊草坪上的自動旋轉噴水裝置,這種旋轉噴水裝置的旋轉角度為240°,它的噴灌區是一個扇形.小濤同學想了解這種裝置能夠噴灌的草坪面積,他測量出了相關數據,并畫出了示意圖.如圖2,A,B兩點的距離為18米,求這種裝置能夠噴灌的草坪面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com