【題目】如圖,邊長為4的正方形ABCD內接于點O,點E是 上的一動點(不與A、B重合),點F是
上的一點,連接OE、OF,分別與AB、BC交于點G,H,且∠EOF=90°,有以下結論,其中正確的個數是( ). ①
=
; ②△OGH是等腰三角形; ③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+
.
A.1
B.2
C.3
D.4
【答案】B
【解析】解:解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,
∴△BOE≌△COF,
∴BE=CF,
∴ =
,①正確;
②∵BE=CF,
∴△BOG≌△COH;
∵∠BOG=∠COH,∠COH+∠OBF=90°,
∴∠GOH=90°,OG=OH,
∴△OGH是等腰直角三角形,②正確.
③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設BG=x,則BH=4-x,
則GH= ,
∴其最小值為2 ,D錯誤.
故選B
科目:初中數學 來源: 題型:
【題目】已知:△ABC是等腰直角三角形,動點P在斜邊AB所在的直線上,以PC為直角邊作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解決下列問題:
(1)如圖①,若點P在線段AB上,且AC=1+ ,PA=
,則: ①線段PB= , PC=;
②猜想:PA2 , PB2 , PQ2三者之間的數量關系為;
(2)如圖②,若點P在AB的延長線上,在(1)中所猜想的結論仍然成立,請你利用圖②給出證明過程;
(3)若動點P滿足 =
,求
的值.(提示:請利用備用圖進行探求)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點E在BC邊上,點F在BC延長線上,且∠CDF=∠BAE.
(1)求證:四邊形AEFD是平行四邊形;
(2)若DF=3,DE=4,AD=5,求CD的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,把矩形沿對角線AC折疊,點B落在點E處,CE與AD相交于點O.
(1)求證:△AOE≌△COD;
(2)若∠OCD=30°,AB= ,求△AOC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的 O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)判斷DE與 O的位置關系,并證明你的結論;
(3)若 O的直徑為3,cosB=
,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一漁船自西向東追趕魚群,在A處測得某無名小島C在北偏東60°方向上,前進2海里到達B點,此時測得無名小島C在東北方向上.已知無名小島周圍2.5海里內有暗礁,問漁船繼續追趕魚群有無觸礁危險?(參考數據: =1.414,
=1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網格中,點A,B,C均在格點上.
(1)AB的長等于;
(2)在△ABC的內部有一點P,滿足S△PAB:S△PBC:S△PCA=1:2:3,請在如圖所示的網格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明) .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥CD,垂足為E,AF⊥BC,垂足為F,AD=4,BF=3,∠EAF=60°,設 =
,如果向量
=k
(k≠0),那么k的值是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com