【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.
(1)求證:EF是⊙0的切線.
(2)如果⊙0的半徑為5,sin∠ADE= ,求BF的長.
【答案】
(1)證明:連接OD,如圖,
∵AB為⊙0的直徑,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD平分BC,即DB=DC,
∵OA=OB,
∴OD為△ABC的中位線,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴EF是⊙0的切線
(2)解:∵∠DAC=∠DAB,
∴∠ADE=∠ABD,
在Rt△ADB中,sin∠ADE=sin∠ABD= =
,而AB=10,
∴AD=8,
在Rt△ADE中,sin∠ADE= =
,
∴AE= ,
∵OD∥AE,
∴△FDO∽△FEA,
∴ =
,即
=
,
∴BF= .
【解析】(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據等腰三角形性質得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以OD∥AC,而DE⊥AC,則OD⊥DE,然后根據切線的判定方法即可得到結論;(2)由∠DAC=∠DAB,根據等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可計算出AD=8,在Rt△ADE中可計算出AE= ,然后由OD∥AE, 得△FDO∽△FEA,再利用相似比可計算出BF.
科目:初中數學 來源: 題型:
【題目】如圖A、F、B、C是半圓O上的四個點,四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點E,過點C作OF的平行線交AB的延長線于點D,延長AF交直線CD于點H.
(1)求證:CD是半圓O的切線;
(2)求 的比值;若DH=6,求EF和半徑OA的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l:y= x,過點A(0,1)作y軸的垂線交直線l于點B,過點B作直線l的垂線交y軸于點A1;過點A1作y軸的垂線交直線l于點B1 , 過點B1作直線l的垂線交y軸于點A2;…按此作法繼續下去,則點A2015的坐標為( )
A.(0,42015)
B.(0,42014)
C.(0,32015)
D.(0,32014)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】王老師從家門口騎車去單位上班,先走平路到達A地,再上坡到達B地,最后下坡到達工作單位,所用的時間與路程的關系如圖所示.若王老師下班時,還沿著這條路返回家中,回家途中經過平路、上坡、下坡的速度不變,那么王老師回家需要的時間是( )
A.15分鐘
B.14分鐘
C.13分鐘
D.12分鐘
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了相應“足球進校園”的號召,某體育用品商店計劃購進一批足球,第一次用6000元購進A品牌足球m個,第二次又用6000元購進B品牌足球,購進的B品牌足球的數量比購進的A品牌足球多30個,并且每個A品牌足球的進價是每個B品牌足球的進價的 .
(1)求m的值;
(2)若這兩次購進的A,B兩種品牌的足球分別按照a元/個, a元/個兩種價格銷售,全部銷售完畢后,可獲得的利潤不低于4800元,求出a的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=21,BC=20,有一個半徑為10的圓分別與AB、BC相切,則此圓的圓心是( )
A.AB邊的中垂線與BC中垂線的交點
B.∠B的平分線與AB的交點
C.∠B的平分線與AB中垂線的交點
D.∠B的平分線與BC中垂線的交點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一矩形紙片ABCD,AB=6,AD=8,將紙片折疊使AB落在AD邊上,折痕為AE,再將△ABE以BE為折痕向右折疊,AE與CD交于點F,則 的值是( )
A.1
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com