【題目】如圖,在平面直角坐標系中,等腰直角三角形OA1A2的直角邊OA1在y軸的正半軸上,且OA1=A1A2=1,以OA2為直角邊作第二個等腰直角三角形OA2A3 , 以OA3為直角邊作第三個等腰直角三角形OA3A4 , …,依此規律,得到等腰直角三角形OA2017A2018 , 則點A2017的坐標為 .
【答案】(0,( )2016)或(0,21008)
【解析】解:∵等腰直角三角形OA1A2的直角邊OA1在y軸的正半軸上,且OA1=A1A2=1,以OA2為直角邊作第二個等腰直角三角形OA2A3 , 以OA3為直角邊作第三個等腰直角三角形OA3A4 , …, ∴OA1=1,OA2= ,OA3=(
)2 , …,OA2017=(
)2016 ,
∵A1、A2、A3、…,每8個一循環,再回到y軸的正半軸,
2017÷8=252…1,
∴點A2017在第一象限,
∵OA2017=( )2016 ,
∴點A2017的坐標為(0,( )2016)即(0,21008).
所以答案是(0,( )2016)或(0,21008).
【考點精析】關于本題考查的數與式的規律,需要了解先從圖形上尋找規律,然后驗證規律,應用規律,即數形結合尋找規律才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】某發電廠共有6臺發電機發電,每臺的發電量為300萬千瓦/月.該廠計劃從今年7月開始到年底,對6臺發電機各進行一次改造升級.每月改造升級1臺,這臺發電機當月停機,并于次月再投入發電,每臺發電機改造升級后,每月的發電量將比原來提高20%.已知每臺發電機改造升級的費用為20萬元.將今年7月份作為第1個月開始往后算,該廠第x(x是正整數)個月的發電量設為y(萬千瓦).
(1)求該廠第2個月的發電量及今年下半年的總發電量;
(2)求y關于x的函數關系式;
(3)如果每發1千瓦電可以盈利0.04元,那么從第1個月開始,至少要到第幾個月,這期間該廠的發電盈利扣除發電機改造升級費用后的盈利總額ω1(萬元),將超過同樣時間內發電機不作改造升級時的發電盈利總額ω2(萬元)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AE⊥BD于點E,CF平分∠BCD,交EA的延長線于點F,且BC=4,CD=2,給出下列結論:①∠BAE=∠CAD;②∠DBC=30°;③AE= ;④AF=2
,其中正確結論的個數有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=90°,反比例函數y=﹣ (x<0)的圖象過點A(﹣1,a),反比例函數y=
(k>0,x>0)的圖象過點B,且AB∥x軸.
(1)求a和k的值;
(2)過點B作MN∥OA,交x軸于點M,交y軸于點N,交雙曲線y= 于另一點,求△OBC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“低碳環保,綠色出行”的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關系如圖,請結合圖象,解答下列問題:
(1)a= , b= , m= ;
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發至到達圖書館前,何時與小軍相距100米?
(4)若小軍的行駛速度是v米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出v的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線y=2x+m與拋物線y=ax2+ax+b有一個公共點M(1,0),且a<b.
(Ⅰ)求拋物線頂點Q的坐標(用含a的代數式表示);
(Ⅱ)說明直線與拋物線有兩個交點;
(Ⅲ)直線與拋物線的另一個交點記為N.
(。┤舂1≤a≤﹣ ,求線段MN長度的取值范圍;
(ⅱ)求△QMN面積的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了傳承中華優秀傳統文化,市教育局決定開展“經典誦讀進校園”活動,某校團委組織八年級100名學生進行“經典誦讀”選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統計圖表.
組別 | 分數段 | 頻次 | 頻率 |
A | 60≤x<70 | 17 | 0.17 |
B | 70≤x<80 | 30 | a |
C | 80≤x<90 | b | 0.45 |
D | 90≤x<100 | 8 | 0.08 |
請根據所給信息,解答以下問題:
(1)表中a= , b=;
(2)請計算扇形統計圖中B組對應扇形的圓心角的度數;
(3)已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com