【題目】如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點,若⊙O的半徑為8,則GE+FH的最大值為( )
A.8B.12C.16D.20
【答案】B
【解析】
首先連接OA、OB,根據圓周角定理,求出∠AOB=2∠ACB=60°,進而判斷出△AOB為等邊三角形;然后根據⊙O的半徑為8,可得AB=OA=OB=8,再根據三角形的中位線定理,求出EF的長度;最后判斷出當弦GH是圓的直徑時,它的值最大,進而求出GE+FH的最大值是多少即可.
如圖所示,連接OA、OB,
∵∠ACB=30°,
∴∠AOB=2∠ACB=60°,
∵OA=OB,
∴△AOB為等邊三角形,
∵O的半徑為8,
∴AB=OA=OB=8,
∵點E,F分別是AC、BC的中點,
∴EF=AB=4,
∵GE+EF+FH=GH,EF為定值,
∴當GH最大時,GE+FH最大
∵當弦GH是圓的直徑時,它的最大值為:8×2=16,
∴GE+FH的最大值為:164=12.
故選B.
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形,在
上取兩點
在
左邊),以
為邊作等邊三角形
,使頂點
在
上.
(1)求△PEF的邊長;
(2)若△PEF的邊在線段
上移動.
分別交
于點
.求證:
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形是平行四邊形,以AB為直徑的經過點D, E是
上一點,且
.
(1)判斷CD與的位置關系,并說明理由;
(2) 若BC=2 .求陰影部分的面積.(結果保留π 的形式).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,且E為AD的中點,FC=3DF,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為8,求△BEG的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規定每千克售價不低于成本,且不高于60元,經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數關系,部分數據如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數表達式;
(2)求售價為多少元時每天獲得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了豐富學生課余生活,計劃開設以下課外活動項目:A—版畫,B—機器人,C—航模,D—園藝種植.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查(每位學生必須選且只能選一個項目),并將調查結果繪制成了兩幅不完整的統計圖,請回答下列問題:
(1)這次被調查的學生共有 人;扇形統計圖中,選“D—園藝種植”的學生人數所占圓心角的度數是 °
(2)請你將條形統計圖補充完整;
(3)若該校學生總數為1000人,試估計該校學生中最喜歡“機器人”和最喜歡“航模”項目的總人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某樓盤準備以每平方米15000元的均價對外銷售,由于國務院有關房地產的新政策出臺后,購房者持幣觀望,房地產開發商為了加快資金周轉,對價格經過兩次下調后,決定以每平方米12150元的均價開盤銷售
求平均每次下調的百分率.
某人準備以開盤價均價購買一套100平方米的住房,開發商給予以下兩種優惠方案以供選擇:
打
折銷售;
不打折,一次性送裝修費每平方米250元.
試問哪種方案更優惠?比另外一種方案優惠多少元?不考慮其他因素
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC內接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結AD.
(1)求證:∠DAC=∠DBA;
(2)求證:PD=PF;
(3)連接CD,若CD﹦3,BD﹦4,求⊙O的半徑和DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD為臺球桌面,AD=240cm,AB=120cm,球目前在G點位置,AG=80cm,如果小丁瞄準BC邊上的點F將球打過去,經過點F反彈后碰到CD邊上的點H,再經過點H反彈后,球剛好彈到AD邊的中點E處落袋.
(1)求證:△BGF∽△DHE;
(2)求BF的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com