【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,E為OC上動點(與點O不重合),作AF⊥BE,垂足為G,交BC于F,交B0于H,連接OG,CC.
(1)求證:AH=BE;
(2)試探究:∠AGO的度數是否為定值?請說明理由;
(3)若OG⊥CG,BG=,求△OGC的面積.
【答案】(1)見解析;(2)見解析;(3).
【解析】分析:(1)通過證明△AOH ≌ △BOE得到結論;
(2)易證△AOH∽△BGH得,由∠OHG =∠AHB可得△OHG∽△AHB,從而∠AGO=∠ABO=45°,從而可得結論;
(3)易證△ABG ∽△BFG得,故AG·GF=BG 2 =5.再證明△AGO ∽△CGF.可得GO·CG =AG·GF=5.故S△OGC =
CG·GO=
.
詳解:(1)∵四邊形ABCD是正方形,
∴OA=OB,∠AOB=∠BOE=90°
∵AF⊥BE,
∴∠GAE+∠AEG=∠OBE+∠AEG=90°.
∴∠ GAE =∠OBE .
∴△AOH ≌ △BOE.
∴AH=BE .
(2)∵∠AOH=∠BGH=90°, ∠AHO=∠BHG,
∴△AOH∽△BGH.
∴.
∴.
∵∠OHG =∠AHB.
∴△OHG∽△AHB.
∴∠AGO=∠ABO=45°,即∠AGO的度數為定值.
(3)∵∠ABC=90°,AF⊥BE,
∴∠BAG=∠FBG,∠AGB=∠BGF=90°,
∴△ABG ∽△BFG.
∴,
∴AG·GF=BG 2 =5.
∵△AHB∽△OHG,
∴∠BAH=∠GOH=∠GBF.
∵∠AOB=∠BGF=90°,
∴∠AOG=∠GFC.
∵∠AGO=45°,CG⊥GO,
∴∠AGO=∠FGC=45°.
∴△AGO ∽△CGF.
∴,
∴GO·CG =AG·GF=5.
∴S△OGC =CG·GO=
.
科目:初中數學 來源: 題型:
【題目】已知二次函數(
,
為常數).
(1)當,
時,求二次函數的最小值;
(2)當時,若在函數值
的情況下,只有一個自變量
的值與其對應,求此時二次函數的解析式;
(3)當時,若在自變量
的值滿足
≤
≤
的情況下,與其對應的函數值
的最小值為21,求此時二次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=4,將△ABC繞點A順時針旋轉30°,得到△ACD,延長AD交BC的延長線于點E,則DE的長為__________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=+bx+c與x軸交于點A和點B(點A在原點的左側,點B在原點的右側),與y軸交于點C,且OC=2OA=2,點D是直線BC下方拋物線上一動點.
(1)求出拋物線的解析式;
(2)連接AD和BC,AD交BC于點E,當S△ABE:S△BDE=5:4時,求點D的坐標;
(3)點F為y軸上的一點,在(2)的條件下,求DF+OF的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在推進鄭州市城鄉生活垃圾分類的行動中,某社區對居民掌握垃圾分類知識的情況進行調査.其中,
兩小區分別有1000名居民參加了測試,社區從中各隨機抽取50名居民成績進行整理得到部分信息:
(信息一)小區50名居民成績的頻數直方圖如下(每一組含前一個邊界值,不含后一個邊界值).
(信息二)上圖中,從左往右第四組的成績如下:
75 | 75 | 79 | 79 | 79 | 79 | 80 | 80 |
81 | 82 | 82 | 83 | 83 | 84 | 84 | 84 |
(信息三),
兩小區各50名居民成績的平均數、中位數、眾數、優秀率(80分及以上為優秀)、方差等數據如下(部分空缺):
小區 | 平均數 | 中位數 | 眾數 | 優秀率 | 方差 |
75.1 | 79 | 40% | 277 | ||
75.1 | 77 | 76 | 45% | 211 |
根據以上信息,回答下列問題:
(1)求小區50名居民成績的中位數.
(2)請估計小區1000名居民成績能超過平均數的人數.
(3)請盡量從多個角度(至少三個),選擇合適的統計量分析,
兩小區參加測試的居民掌握垃圾分類知識的情況.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知點的坐標為
,點
分別是某函數圖象與
軸、
軸的交點,點
是此圖象上的一動點.設點
的橫坐標為
,
的長為
,且
與
之間滿足關系:
,則正確結論的序號是( )
①;②
;③當
時,
;④
的最大值是6.
A.①②③B.③④C.①②④D.①④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系內,以原點O為圓心,1為半徑作圓,點P在直線上運動,過點P作該圓的一條切線,切點為A,則PA的最小值為
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,,AC=3,BC=4.點O為邊AB上一點(不與A重合)⊙O是以點O為圓心,AO為半徑的圓.當⊙O與三角形邊的交點個數為3時,則OA的范圍( )
A.或
B.
或
C.D.
或
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com