【題目】如圖,已知E是正方形ABCD的邊AB上一點,點A關于DE的對稱點為F,若正方形ABCD的邊長為1,且∠BFC=90°,則AE的長為___
【答案】
【解析】
延長EF交CB于M,連接DM,根據正方形的性質得到AD=DC,∠A=∠BCD=90°,由折疊的性質得到∠DFE=∠DFM=90°,通過Rt△DFM≌Rt△DCM,于是得到MF=MC.由等腰三角形的性質得到∠MFC=∠MCF由余角的性質得到∠MFC=∠MBF,于是求得MF=MB,根據勾股定理即可得到結論.
如圖,
延長EF交CB于M,連接DM,
∵四邊形ABCD是正方形,
∴AD=DC,∠A=∠BCD=90°,
∵將△ADE沿直線DE對折得到△DEF,
∴∠DFE=∠DFM=90°,
在Rt△DFM與Rt△DCM中,,
∴Rt△DFM≌Rt△DCM(HL),
∴MF=MC,
∴∠MFC=∠MCF,
∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,
∴∠MFB=∠MBF,
∴MB=MC,
∴MF=MC=BM=,設AE=EF=x,
∵BE2+BM2=EM2,
即(1-x)2+()2=(x+
)2,
解得:x=,
∴AE=,
故答案為:.
科目:初中數學 來源: 題型:
【題目】網格是由邊長為1的小正方形組成,點A,B,C位置如圖所示,若點,
.
(1)建立適當的平面直角坐標系,并寫出點C坐標(______,______);點B到x軸的距離是______,點C到y軸的距離是______;
(2)在平面直角坐標系中找一點D,使A,B,C,D為頂點的四邊形的所有內角都相等,再畫出四邊形ABCD.
(3)請你說出線段AB經過怎樣的變換得到線段DC的?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知E、F分別是平行四邊形ABCD的邊AB、CD上的兩點,且∠CBF=∠ADE.(1)求證:△ADE≌△CBF;
(2)判定四邊形DEBF是否是平行四邊形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分別為邊AC、AB的中點.
(1)求∠A的度數;
(2)求EF和AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0),B(5,0)兩點,直線y=﹣x+3與y軸交于點C,與x軸交于點D.點P是x軸上方的拋物線上一動點,過點P作PF⊥x軸于點F,交直線CD于點E.設點P的橫坐標為m.
(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點E′是點E關于直線PC的對稱點,是否存在點P,使點E′落在y軸上?若存在,請直接寫出相應的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知線段a,直線AB和CD相交于點O.利用尺規按下列要求作圖:
(1)在射線OA、OB、OC、OD上作線段OA′、OB′、OC′、OD′,使它們分別與線段a相等;
(2)連接A′C′、C′B′、B′D′、D′A′.你得到了一個怎樣的圖形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形的兩邊
,
的長分別為3,8,且點
,
均在
軸的負半軸上,
是
的中點,反比例函數
的圖象經過點
,與
交于點
.
(1)若點坐標為
,求
的值;
(2)若,且點
的橫坐標為
,則點
的橫坐標為______(用含
的代數式表示),點
的縱坐標為______,反比例函數的表達式為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com