【題目】如圖,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC與BD相交于點O,限用無刻度直尺完成以下作圖:
(1)在圖1中作線段BC的中點P;
(2)在圖2中,在OB、OC上分別取點E、F,使EF∥BC.
【答案】(1)見解析;(2)見解析.
【解析】
(1)延長BA和CD,它們相交于點Q,然后延長QO交BC于P,則PB=PC,根據線段垂直平分線的逆定理可證明;
(2)連結AP交OB于E,連結DP交OC于F,則EF∥BC.分別證明△BEP≌△CFP,△BEP≌△CFP可得∠APB=∠DPC和∠PEF=∠PFE,根據三角形內角和定理和平角的定義可得∠APB=∠PEF,即可證明EF//BC.
解:(1)如圖1,點P為所作,
理由如下:∵∠A=∠D=90°,AC=BD,BC=CB,
∴△ABC≌△DCB
∴∠ABC=∠DCB,∠ACB=∠DBC
∴QB=QC,OB=OC
∴Q,O在BC的垂直平分線上,
∴延長QO交BC于P,就有P為線段BC的中點;
(2)如圖2,EF為所作.
理由如下:∵△ABC≌△DCB
∴AB=DC,
又∵∠ABC=∠DCB,BP=PC
∴△ABP≌△DCP
∴∠APB=∠DPC
又∵∠DBC=∠ACB,BP=PC
∴△BEP≌△CFP
∴PE=PF
∴∠PEF=∠PFE,
∵∠APB+∠DPC+∠APD=180°
∠PEF+∠PFE+∠APD=180°
∴∠APB=∠PEF
∴EF//BC.
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象經過點A(0,4)和點B(3,0),以線段AB為邊在第一象限內作等腰直角△ABC,使∠BAC=90°.
(1)求一次函數的解析式;
(2)求出點C的坐標;
(3)點P是y軸上一動點,當PB+PC最小時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年五、六月份,我省各地、市普遭暴雨襲擊,水位猛漲.某市抗洪搶險救援隊伍在處接到報告:有受災群眾被困于一座遭水淹的樓頂
處,情況危急!救援隊伍在
處測得
在
的北偏東
的方向上(如圖所示),隊伍決定分成兩組:第一組馬上下水游向
處救人,同時第二組從陸地往正東方向奔跑
米到達
處,再從
處下水游向
處救人,已知
在
的北偏東
的方向上,且救援人員在水中游進的速度均為
米/秒.在陸地上奔跑的速度為
米/秒,試問哪組救援隊先到
處?請說明理由.(參考數據
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,一次函數y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.
(1)線段AB,BC,AC的長分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖2.
請從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長;
②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.
B:①求線段DE的長;
②在坐標平面內,是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知等邊△ABC的邊長為12,D是AB上的動點,過D作DE⊥BC于點E,過E作EF⊥AC于點F,過F作FG⊥AB于點G.當G與D重合時,AD的長是( )
A.9B.8C.4D.3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】Rt△ABC中,∠ACB=90°,AC=BC,點D在斜邊AB上,且AD=AC,過點B作BE⊥CD交CD的延長線于點E.
(1)畫出符合題意的圖形;
(2)求∠BCD的度數;
(3)求證:CD=2BE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】李大爺要圍成一個矩形菜園,菜園的一邊利用足夠長的墻,用籬笆圍成的另外三邊總長應恰好為24米.要圍成的菜園是如圖所示的矩形ABCD.設BC邊的長為x米,AB邊的長為y米,則y與x之間的函數關系式是( )
A. y=-2x+24(0<x<12) B. y=-x+12(0<x<24)
C. y=2x-24(0<x<12) D. y=x-12(0<x<24)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)求證:2CD2=AD2+DB2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=8,點C和點D是⊙O上關于直線AB對稱的兩個點,連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點E,過點C作直線CG與線段AB的延長線相交于點F,與直線AD相交于點G,且∠GAF=∠GCE
(1)求證:直線CG為⊙O的切線;
(2)若點H為線段OB上一點,連接CH,滿足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com