精英家教網 > 初中數學 > 題目詳情
如圖,在等腰直角△ACB中,∠ACB=90°,O是斜邊AB的中點,點D、E分別在直角邊AC、BC上,且∠DOE=90°,DE交OC于點P.則下列結論:
(1)圖形中全等的三角形只有兩對;
(2)△ABC的面積等于四邊形CDOE的面積的2倍;
(3)CD+CE=OA;(4)AD2+BE2=2OP•OC.
其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
【答案】分析:結論(1)錯誤.因為圖中全等的三角形有3對;
結論(2)正確.由全等三角形的性質可以判斷;
結論(3)正確.利用全等三角形和等腰直角三角形的性質可以判斷.
結論(4)正確.利用相似三角形、全等三角形、等腰直角三角形和勾股定理進行判斷.
解答:解:
結論(1)錯誤.理由如下:
圖中全等的三角形有3對,分別為△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.
由等腰直角三角形的性質,可知OA=OC=OB,易得△AOC≌△BOC.
∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.
在△AOD與△COE中,

∴△AOD≌△COE(ASA).同理可證:△COD≌△BOE.
結論(2)正確.理由如下:
∵△AOD≌△COE,∴S△AOD=S△COE,
∴S四邊形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC
即△ABC的面積等于四邊形CDOE的面積的2倍.
結論(3)正確,理由如下:
∵△AOD≌△COE,∴CE=AD,
∴CD+CE=CD+AD=AC=OA.
結論(4)正確,理由如下:
∵△AOD≌△COE,∴AD=CE;∵△COD≌△BOE,∴BE=CD.
在Rt△CDE中,由勾股定理得:CD2+CE2=DE2,∴AD2+BE2=DE2
∵△AOD≌△COE,∴OD=OE,
又∵OD⊥OE,∴△DOE為等腰直角三角形,∴DE2=2OE2,∠DEO=45°.
∵∠DEO=∠OCE=45°,∠COE=∠COE,
∴△OEP∽△OCE,
,即OP•OC=OE2
∴DE2=2OE2=2OP•OC,
∴AD2+BE2=2OP•OC.
綜上所述,正確的結論有3個,故選C.
點評:本題是幾何綜合題,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要幾何知識點.難點在于結論(4)的判斷,其中對于“OP•OC”線段乘積的形式,可以尋求相似三角形解決問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在等腰直角三角形ABC中,∠A=90°,P是△ABC內一點,PA=1,PB=3,PC=
7
,那么∠CPA=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

23、如圖,在等腰直角三角形ABC和DEC中,∠BCA=∠BCE=90°,點E在邊AB上,ED與AC交于點F,連接AD.
(1)求證:△BCE≌△ACD.
(2)求證:AB⊥AD.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•海滄區一模)如圖,在等腰直角三角形ABC中,AC=BC=2,D為AB上的動點(不與A,B重合),過D作DE⊥AC于E,DF⊥BC于F,設AD的長度為x,DE與DF的長度和為y.則能表示y與x之間的函數關系的圖象大致是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖①,在等腰直角三角板ABC中,斜邊BC為2個單位長度,現把這塊三角板在平面直角坐標系xOy中滑動,并使B、C兩點始終分別位于y軸、x軸的正半軸上,直角頂點A與原點O位于BC兩側.
(1)取BC中點D,問OD+DA是否發生改變,若會,說明理由;若不會,求出OD+DA;
(2)你認為OA的長度是否會發生變化?若變化,那么OA最長是多少?OA最長時四邊形OBAC是怎樣的四邊形?并說明理由;
(3)填空:當OA最長時A的坐標(
2
2
,
2
2
),直線OA的解析式
y=x
y=x

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在等腰直角△ABC的斜邊AB上取兩點M、N(不與A、B重合)使∠MCN=45°,記AM=m,MN=x,NB=n,試判斷以x、m、n為邊長的三角形的形狀,并給予說明.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视