【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP,CP的延長線分別交AD于點E,F,連結BD,DP,BD與CF相交于點H.給出下列結論: ①△ABE≌△DCF;②△DPH是等腰三角形;③PF= AB;④
=
.
其中正確結論的個數是( )
A.1
B.2
C.3
D.4
【答案】D
【解析】解:∵△BPC是等邊三角形, ∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
在△ABE與△CDF中, ,
∴△ABE≌△DCF,故①正確;
∵PC=DC,∠PCD=30°,
∴∠CPD=75°,
∵∠DBC=45°,∠BCF=60°,
∴∠DHP=∠BHC=75°,
∴PD=DH,
∴△DPH是等腰三角形,故②正確;
∵△BPC是等邊三角形,
∴可得∠FPE=∠PFE=60°,
∴△FEP是等邊三角形,
∴△FPE∽△CPB,
∴ =
,
設PF=x,PC=y,則DC=y,
∵∠FCD=30°,
∴y= (x+y),
整理得:(1﹣ )y=
x,
解得: =
,
則PF= AB,故③正確;
如圖,過P作PM⊥CD,PN⊥BC,
設正方形ABCD的邊長是4,△BPC為正三角形,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
∴∠PCD=30°
∴PN=PBsin60°=4× =2
,PM=PCsin30°=2,
S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD
= ×4×2
+
×2×4﹣
×4×4
=4 +4﹣8=4
﹣4,
∴ =
,故④正確;
故正確的有4個,
故選:D.
科目:初中數學 來源: 題型:
【題目】已知,點P是Rt△ABC斜邊AB上一動點(不與A、B重合),分別過A、B向直線CP作垂線,垂足分別為E、F、Q為斜邊AB的中點.
(1)如圖1,當點P與點Q重合時,AE與BF的位置關系,QE與QF的數量關系.
(2)如圖2,當點P在線段AB上不與點Q重合時,試判斷QE與QF的數量關系,并給予證明;
(3)如圖3,當點P在線段BA(或AB)的延長線上時,此時(2)中的結論是否成立?請畫出圖形并給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過矩形ABCD的四個頂點作對角線AC、BD的平行線,分別相交于E、F、G、H四點,則四邊形EFGH為( )
A.平行四邊形
B.矩形
C.菱形
D.正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,作AD⊥AB交BC的延長線于點D,作CE⊥AC,且使AE∥BD,連結DE.
(1)求證:AD=CE.
(2)若DE=3,CE=4,求tan∠DAE的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某縣大力推進義務教育均衡發展,加強學校標準化建設,計劃用三年時間對全縣學校的設施和設備進行全面改造,2014年縣政府已投資5億元人民幣,若每年投資的增長率相同,預計2016年投資7.2億元人民幣,那么每年投資的增長率為( )
A.20%
B.40%
C.﹣220%
D.30%
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,每個小正方形的邊長均為1,每個小正方形的頂點稱為格點.請在給出的5×5的正方形網格中,以格點為頂點,畫出兩個三角形,一個三角形的長分別是 、2、
,另一個三角形的三邊長分別是
、2
、5
.(畫出的兩個三角形除頂點和邊可以重合外,其余部分不能重合)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究規律:如圖,已知直線m∥n,A、B為直線n上的兩點,C、P為直線m上的兩點.
(1)請寫出圖中面積相等的各對三角形: .
(2)如果A、B、C為三個定點,點P在m上移動,那么無論P點移動到任何位置總有:與△ABC的面積相等;理由是: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數根,第三邊BC的長為5,當△ABC是等腰三角形時,求k的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com