【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長.
科目:初中數學 來源: 題型:
【題目】小明在一次數學興趣小組活動中,對一個數學問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=S△ABF.(S表示面積)
問題遷移:如圖2:在已知銳角∠AOB內有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉的過程中發現,△MON的面積存在最小值,請問當直線MN在什么位置時,△MON的面積最小,并說明理由.
實際應用:如圖3,若在道路OA、OB之間有一村莊Q發生疫情,防疫部門計劃以公路OA、OB和經過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結果精確到0.1km2)(參考數據:sin66°≈0.91,tan66°≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)(6,3)(,
)、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P(a,b),若點P′的坐標為(,ka+b)(其中k為常數,且k≠0),則稱點P′為點P的“k屬派生點”.
例如:P(1,4)的“2屬派生點”為P′(1+,2×1+4),即P′(3,6).
(1)①點P(﹣1,﹣2)的“2屬派生點”P′的坐標為 _________ ;
②若點P的“k屬派生點”P′的坐標為(3,3),請寫出一個符合條件的點P的坐標_________ ;
(2)若點P在x軸的正半軸上,點P的“k屬派生點”為P′點,且△OPP′為等腰直角三角形,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點為D(﹣1,3),與x軸的一個交點在(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:
①b2+4ac>0;②c﹣a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有實數根,其中正確的結論為( )
A.②③ B.①③ C.①②③ D.①②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com