精英家教網 > 初中數學 > 題目詳情

【題目】如圖,RtAOBDOC,AOB=COD=90°,MOA的中點,OA=6,OB=8,CODO點旋轉,連接AD,CB交于P,連接MP,MP的最小值____

【答案】1

【解析】

根據兩邊對應成比例且夾角相等證明△COB∽△DOA,得到∠OBC=∠OAD,得到O、B、P、A共圓,求出MSPS,根據三角形三邊關系解答即可.

AB的中點S,連接MS、PS,

PM,
∵∠AOB=90°,OA=6,OB=8,
∴AB=10,
∵∠AOB=∠COD=90°,
∴∠COB=∠DOA,
∵△AOB∽△DOC,
,
∴△COB∽△DOA,
∴∠OBC=∠OAD,
∴O、B、P、A共圓,

∵∠AOB=90°
∴∠APB=∠AOB=90°,

∵SAB的中點,
∴PS=AB=5,
∵MOA的中點,SAB的中點,
∴MS=OB=4,

PM
∴MP的最大值是5-4=1,
故答案是:1

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】二次函數 的圖象如圖所示,根據圖象解答下列問題:

(1)寫出不等式 的解集;

(2)寫出 的增大而減小的自變量 的取值范圍;

(3)分別求出 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】RtABC中,∠C=90°,AC=20cm,BC=15cm.現有動點P從點A出發,沿AC向點C方向運動,動點Q從點C出發,沿線段CB也向點B方向運動.如果點P的速度是4cm/秒,點Q的速度是2cm/秒,它們同時出發,當有一點到達所在線段的端點時,就停止運動,設運動的時間為t秒.

(1)用含t的代數式表示RtCPQ的面積S;

(2)t=3秒時,P、Q兩點之間的距離是多少?

(3)t為多少秒時,以點C、P、Q為頂點的三角形與△ABC相似?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】求證:相似三角形面積的比等于相似比的平方.(請根據題意畫出圖形,寫出已知,求證并證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線與坐標軸分別交于點AB,與直線交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發向點A做勻速運動,同時動點P從點A出發向點O做勻速運動,當點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Qx軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點PQ重合除外)。

1)求點P運動的速度是多少?

2)當t為多少秒時,矩形PEFQ為正方形?

3)當t為多少秒時,矩形PEFQ的面積S最大?并求出最大值。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某蔬菜生產基地的氣溫較低時,用裝有恒溫系統的大棚栽培一種新品種蔬菜.如圖是試驗階段的某天恒溫系統從開啟到關閉后,大棚內的溫度y (℃)與時間x(h)之間的函數關系,其中線段AB、BC表示恒溫系統開啟階段,雙曲線的一部分CD表示恒溫系統關閉階段.

請根據圖中信息解答下列問題:

(1)求這天的溫度y與時間x(0≤x≤24)的函數關系式;

(2)求恒溫系統設定的恒定溫度;

(3)若大棚內的溫度低于10℃時,蔬菜會受到傷害.問這天內,恒溫系統最多可以關閉多少小時,才能使蔬菜避免受到傷害?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線是足球場的底線,是球門,點是射門點,連接,叫做射門角.

(1)如圖,點是射門點,另一射門點在過三點的圓外(未超過底線).證明:

(2)如圖,經過球門端點,直線,垂足為且與相切與點,于點,連接,,求此時一球員帶球沿直線向底線方向運球時最大射門角的度數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣x+1與兩坐標軸分別交于A,B兩點,將線段OA分成n等份,分點分別為P1,P2,P3,…,Pn1,過每個分點作x軸的垂線分別交直線AB于點T1,T2,T3,…,Tn1,用S1,S2S3,…,Sn1分別表示RtT1OP1RtT2P1P2,…,RtTn1Pn2Pn1的面積,則S1+S2+S3+…+Sn1=__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC、EF是⊙O的弦,且EF垂直AB于點G,交BC于點H,CDFE延長線交于D點,CDDH

(1)求證:CD是⊙O的切線;

(2)若HBC中點,AB=10,EF=8,求CD的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视