【題目】如圖,已知平分
,
于
,
于
,且
.
()求證:
≌
.
()若
,
,
,求
的長.
【答案】()證明見解析;(
)
.
【解析】試題分析:(1)已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,根據角平分線的性質定理可得CE=CF,再由,根據HL即可判定△BCE≌△DCF;(2)由Rt△BCE≌△Rt△DCF可得DF=EB,再由HL證明Rt△AFC≌△Rt△AEC,即可得AE=AF,設DF=x,則有9+x=21-x,得x=6,在Rt△CDF中,根據勾股定理求得CF=8,在Rt△AFC中,再運用勾股定理求得AC即可.
試題解析:
()證明:∵
平分
,
于
,
于
,
∴,
,
,
∵,
∴≌
.
()由(
)得,
≌
,
∴,
∵與
中,
,
∴≌
,
∴,
設,則有
,得
,
在中,
,
,
∴,
在中,
,
,
∴.
科目:初中數學 來源: 題型:
【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點正上方1m的P處發出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數表達式y=a(x﹣4)2+h,已知點O與球網的水平距離為5m,球網的高度為1.55m.
(1)當a=﹣時,①求h的值;②通過計算判斷此球能否過網.
(2)若甲發球過網后,羽毛球飛行到與點O的水平距離為7m,離地面的高度為m的Q處時,乙扣球成功,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x,y的方程組,則下列結論中正確的是( )
①當a=5時,方程組的解是;
②當x,y的值互為相反數時,a=20;
③不存在一個實數a使得x=y;
④若,則a=2.
A. ①②④ B. ②③④ C. ②③ D. ③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點C,D作BA,BC的平行線交于點E,且DE交AC于點O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】作圖題:如圖,直線AB,CD相交于點O,點P為射線OC上異于O的一個點.
(1)請用你手中的數學工具畫出∠AOC的平分線OE;
(2)過點P畫出(1)中所得射線OE的垂線PM(垂足為點M),并交直線AB于點N;
(3)請直接寫出上述所得圖形中的一對相等線段 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】是一張等腰直角三角形紙板,
,
.
()要在這張紙板中剪出一個盡可能大的正方形,有甲、乙兩種剪法(如圖
),比較甲、乙兩種剪法,哪種剪法所得的正方形面積大?請說明理由.
()圖
中甲種剪法稱為第
次剪取,記所得正方形面積為
;按照甲種剪法,在余下的
和
中,分別剪取正方形,得到兩個相同的正方形,稱為第
次剪取,并記這兩個正方形面積和為
(如圖
),則
__________;再在余下的四個三角形中,用同樣方法分別剪取正方形,得到四個相同的正方形,稱為第
次剪取,并記這四個正方形面積和為
,繼續操作下去,則第
次剪取時,
__________.
()求第
次剪取后,余下的所有小三角形的面積之和__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC在平面直角坐標系中,且A、B
、C
.將其平移后得到
,若A,B的對應點是
,
,C的對應點
的坐標是
.
(1)在平面直角坐標系中畫出△ABC;
(2)寫出點的坐標是_____________,
坐標是___________;
(3)此次平移也可看作向________平移了____________個單位長度,再向_______平移了______個單位長度得到△ABC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為a的正方形ABCD和邊長為b(a>b)的正方形CEFG拼在一起,B、C、E三點在同一直線上,設圖中陰影部分的面積為S.
圖① 圖② 圖③
(1)如圖①,S的值與a的大小有關嗎?說明理由;
(2)如圖②,若a+b=10,ab=21,求S的值;
(3)如圖③,若a-b=2,=7,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com