【題目】如圖,在矩形ABCD中,AB=12cm,BC=6cm,點P沿AB邊從點A開始向點B以2cm/s的速度移動,點Q沿DA邊從點D開始向點A以1cm/s的速度移動,如果P、Q同時出發,用t(s)表示移動的時間(0≤t≤6),那么:
(1)當t為何值時,△QAP是等腰直角三角形?
(2)當t為何值時,以點Q、A、P為頂點的三角形與△ABC相似?
科目:初中數學 來源: 題型:
【題目】小穎和小強上山游玩,小穎乘坐纜車,小強步行,兩人相約在山頂的纜車終點會和,已知小強行走到纜車終點的路程是纜車到山頂的線路長的倍,小穎在小強出發后
分才乘上纜車,纜車的平均速度為
米/分,若圖中的折線表示小強在整個行走過程中的路程(米)與出發時間(分)之間的關系的圖像,請回答下列問題.
(1)小強行走的總路程是 米,他途中休息了 分;
(2)分別求出小強在休息前和休息后所走的兩段路程的速度;
(3)當小穎到達纜車終點時,小強離纜車終點的路程是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A,B,C,D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】當值相同時,我們把正比例函數
與反比例函數
叫做“關聯函數”,可以通過圖象研究“關聯函數”的性質.小明根據學習函數的經驗,先以
與
為例對“關聯函數”進行了探究.下面是小明的探究過程,請你將它補充完整.
(1)如圖,在同一坐標系中畫出這兩個函數的圖象.設這兩個函數圖象的交點分別為,
,則點
的坐標為
,點
的坐標為_______;
(2)點是函數
在第一象限內的圖象上一個動點(點
不與點
重合),設點
的坐標為
,其中
且
.
①結論:作直線
,
分別與
軸交于點
,
,則在點
運動的過程中,總有
.
證明:設直線的解析式為
,將點
和點
的坐標代入,得
解得 則直線
的解析式為
.
令 ,可得
,則點
的坐標為
.
同理可求,直線的解析式為
,點
的坐標為________.
請你繼續完成證明的后續過程:
②結論:設
的面積為
,則
是
的函數.請你直接寫出
與
的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式。求解二元一次方程組,把它轉化為一元一次方程來解:求解一元二次方程,把它轉化為兩個一元一次方程來解。求解分式方程,把它轉化為整式方程來解。各類方程的解法不盡相同,但是它們有一個共同的基本數學思想--轉化,把未知轉化為已知。
用“轉化”的數學思想,我們還可以解一些新的方程。例如,一元三次方程,可以通過因式分解把它轉化為
,解方程
和
,可得方程
的解。
(1)問題:方程的解是
,
_____,
_____。
(2)拓展:用“轉化”思想求方程的解。
(3)應用:如圖,已知矩形草坪ABCD的長,寬
,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C。求AP的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“你記得父母的生日嗎?”這是某中學在七年級學生中開展主題為“感恩”教育時 設置的一個問題,有以下四個選項:A.父母生日都記得;B.只記得母親生日;C.只 記得父親生日;D.父母生日都不記得.在隨機調查了(1)班和(2)班各 50 名學 生后,根據相關數據繪出如圖所示的統計圖.
(1)補全頻數分布直方圖;
(2)已知該校七年級共 900 名學生,據此推算,該校七年級學生中,“父母生日都 不記得”的學生共多少名?
(3)若兩個班中“只記得母親生日”的學生占 22%,則(2)班“只記得母親生日” 的學生所占百分比是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C、D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓心O到直線AB的距離為6,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1 :y=-3x+3與x軸交于點D,直線l2經過A(4,0)、B(3,)兩點,直線l1 與直線l2交于點C.
(1)求直線l2的解析式和點C的坐標;
(2)在 y軸上是否存在一點P,使得四邊形PDBC的周長最?若存在,請求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=ax+b(a≠0)的圖象與反比例函數y= (k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=
,點B的坐標為(m,-2).
(1)求△AHO的周長;
(2)求該反比例函數和一次函數的解析式.
【答案】(1)△AHO的周長為12;(2) 反比例函數的解析式為y=,一次函數的解析式為y=-
x+1.
【解析】試題分析: (1)根據正切函數,可得AH的長,根據勾股定理,可得AO的長,根據三角形的周長,可得答案;
(2)根據待定系數法,可得函數解析式.
試題解析:(1)由OH=3,tan∠AOH=,得
AH=4.即A(-4,3).
由勾股定理,得
AO==5,
△AHO的周長=AO+AH+OH=3+4+5=12;
(2)將A點坐標代入y=(k≠0),得
k=-4×3=-12,
反比例函數的解析式為y=;
當y=-2時,-2=,解得x=6,即B(6,-2).
將A、B點坐標代入y=ax+b,得
,
解得,
一次函數的解析式為y=-x+1.
考點:反比例函數與一次函數的交點問題.
【題型】解答題
【結束】
21
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,過點C作CE⊥DB交DB的延長線于點E,直線AB與CE相交于點F.
(1)求證:CF為⊙O的切線;
(2)填空:當∠CAB的度數為________時,四邊形ACFD是菱形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com