【題目】如圖,在直角坐標系中,
,
,
是線段
上靠近點
的三等分點.
(1)若點是
軸上的一動點,連接
、
,當
的值最小時,求出點
的坐標及
的最小值;
(2)如圖2,過點作
,交
于點
,再將
繞點
作順時針方向旋轉,旋轉角度為
,記旋轉中的三角形為
,在旋轉過程中,直線
與直線
的交點為
,直線
與直線
交于點
,當
為等腰三角形時,請直接寫出
的值.
【答案】(1),
;(2)α的值為45°,90°,135°,180°.
【解析】
(1)作HG⊥OB于H.由HG∥AO,求出OG,HG,即可得到點H的坐標,作點B關于y軸的對稱點B′,連接B′H交y軸于點M,則B'(-2,0),此時MB+MH的值最小,最小值等于B'H的長;求得直線B′H的解析式為y= ,即可得到點M的坐標為
.
(2)依據△OST為等腰三角形,分4種情況畫出圖形,即可得到旋轉角的度數.
解:(1)如圖1,作HG⊥OB于H.
∵HG∥AO,
∴
∵OB=2,OA= ,
∴GB= ,HG=
,
∴OG=OB-GB= ,
∴H(,
)
作點B關于y軸的對稱點B′,連接B′H交y軸于點M,則B'(-2,0),
此時MB+MH的值最小,最小值等于B'H的長.
∵B'(-2,0),H(,
)
B'H=
∴MB+MH的最小值為
設直線B'H的解析式為y=kx+b,則有
解得:
∴直線B′H的解析式為
當x=0時,y=
∴點M的坐標為:
(2)如圖,當OT=OS時,α=75°-30°=45°;
如圖,當OT=TS時,α=90°;
如圖,當OT=OS時,α=90°+60°-15°=135°;
如圖,當ST=OS時,α=180°;
綜上所述,α的值為45°,90°,135°,180°.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BC=AC=6,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)求點O到直線DE的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向為x軸,噴水池中心為原點建立直角坐標系.
(1)求水柱所在拋物線(第一象限部分)的函數表達式;
(2)王師傅在噴水池內維修設備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內?
(3)經檢修評估,游樂園決定對噴水設施做如下設計改進:在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請探究擴建改造后噴水池水柱的最大高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】楊梅是漳州的特色時令水果.楊梅一上市,水果店的老板用1200元購進一批楊梅,很快售完;老板又用2500元購進第二批楊梅,所購件數是第一批的2倍,但進價每件比第一批多了5元.
(1)第一批楊梅每件進價多少元?
(2)老板以每件150元的價格銷售第二批楊梅,售出后,為了盡快售完,決定打折促銷.要使得第二批楊梅的銷售利潤不少于320元,剩余的楊梅每件售價至少打幾折(利潤
售價
進價)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】給定關于的二次函數
,
學生甲:當時,拋物線與
軸只有一個交點,因此當拋物線與
軸只有一個交點時,
的值為3;
學生乙:如果拋物線在軸上方,那么該拋物線的最低點一定在第二象限;
請判斷學生甲、乙的觀點是否正確,并說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:由火柴棒拼出的一列圖形,第個圖形是由
個等邊三角形拼成的,通過觀察,分析發現:第8個圖形中平行四邊形的個數( ).
A.16B.18C.20D.22
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線 y=ax2+bx+5 的頂點坐標為(2,9),與 y 軸交于點 A(0,5),與 x 軸交于點 E、B(點 E 在點 B 的左側),點 P 為拋物線上一點.
(1)求該拋物線的解析式;
(2)過點 A 作 AC 平行于 x 軸,交拋物線于點 C,當點 P 在 AC 上方時,作 PD平行于 y 軸交 AB 于點 D,求使四邊形 APCD 的面積最大時點 P 的坐標;
(3)設 N 為 x 軸上一點,當以 A、E、N、P 為頂點,AE 為一邊的四邊形是平行四邊形時,求點 P 的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發生,許多道路在事故易發路段設置了區間測速如圖,學校附近有一條筆直的公路l,其間設有區間測速,所有車輛限速40千米/小時數學實踐活動小組設計了如下活動:在l上確定A,B兩點,并在AB路段進行區間測速.在l外取一點P,作PC⊥l,垂足為點C.測得PC=30米,∠APC=71°,∠BPC=35°.上午9時測得一汽車從點A到點B用時6秒,請你用所學的數學知識說明該車是否超速.(參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com