分析 由∠BAC=90°,于是得到∠ABF+∠AFB=90°,根據垂直的定義得到∠ADB=90°,于是得到∠EBD+∠BED=90°,根據角平分線的定義得到∠ABF=∠EBD,等量代換得到∠AFB=∠BED,∠AEF=∠AFB,根據等腰三角形的判定定理即可得到結論.
解答 解:∵∠BAC=90°,
∴∠ABF+∠AFB=90°,
又∵AD⊥BC,
∴∠ADB=90°,
∴∠EBD+∠BED=90°,
又∵BF平分∠ABC,
∴∠ABF=∠EBD,
∴∠AFB=∠BED,
又∵∠AEF=∠BED,
∴∠AEF=∠AFB,
∴AE=AF,
∵AE=13,
∴AF=13.
點評 本題考查了等腰三角形的判定和性質,角平分線的定義,熟練掌握等腰三角形的性質是解題的關鍵.
科目:初中數學 來源: 題型:解答題
次數 | 1 | 2 | 3 | 4 | 5 |
小明 | 13.3 | 13.4 | 13.3 | 13.2 | 13.3 |
小亮 | 13.2 | 13.4 | 13.1 | 13.5 | 13.3 |
平均數 | 極差 | 方差 | |
小明 | 13.3 | 0.2 | 0.004 |
小亮 | 13.3 | 0.4 | 0.02 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | -$\frac{24}{5}$ | B. | $\frac{26}{5}$ | C. | $\frac{24}{5}$ | D. | -$\frac{26}{5}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1.5cm2 | B. | 3cm2 | C. | 12cm2 | D. | 24cm2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com