【題目】如圖,在平面直角坐標系xOy,已知二次函數y=﹣x2+bx的圖象過點A(4,0),頂點為B,連接AB、BO.
(1)求二次函數的表達式;
(2)若C是BO的中點,點Q在線段AB上,設點B關于直線CQ的對稱點為B',當△OCB'為等邊三角形時,求BQ的長度;
(3)若點D在線段BO上,OD=2DB,點E、F在△OAB的邊上,且滿足△DOF與△DEF全等,求點E的坐標.
【答案】(1)二次函數的表達式為y=﹣x2+2x;(2)BQ=
;(3)點E的坐標為:(
,0)或(
,
)或(2+
,2﹣
)或(4,0).
【解析】
試題(1)利用待定系數法求二次函數的表達式;
(2)先求出OB和AB的長,根據勾股定理的逆定理證明∠ABO=90°,由對稱計算∠QCB=60°,利用特殊的三角函數列式可得BQ的長;
(3)因為D在OB上,所以F分兩種情況:
i)當F在邊OA上時,ii)當點F在AB上時,
當F在邊OA上時,分三種情況:
①如圖2,過D作DF⊥x軸,垂足為F,則E、F在OA上,②如圖3,作輔助線,構建△OFD≌△EDF≌△FGE,③如圖4,將△DOF沿邊DF翻折,使得O恰好落在AB邊上,記為點E;當點F在OB上時,過D作DF∥x軸,交AB于F,連接OF與DA,依次求出點E的坐標即可.
試題解析:(1)將點A的坐標代入二次函數的解析式得:﹣×42+4b=0,解得b=2,
∴二次函數的表達式為y=﹣x2+2x.
(2)∵y=﹣x2+2x=﹣
(x﹣2)2+2,
∴B(2,2),拋物線的對稱軸為x=2.
如圖1所示:
由兩點間的距離公式得:OB= =2
,BA=
=2
.
∵C是OB的中點,
∴OC=BC=.
∵△OB′C為等邊三角形,
∴∠OCB′=60°.
又∵點B與點B′關于CQ對稱,
∴∠B′CQ=∠BCQ=60°.
∵OA=4,OB=2,AB=2
,
∴OB2+AB2=OA2,
∴∠OBA=90°.
在Rt△CBQ中,∠CBQ=90°,∠BCQ=60°,BC=,
∴tan60°= ,
∴BQ=CB=
×
=
.
(3)分兩種情況:
i)當F在邊OA上時,
①如圖2,過D作DF⊥x軸,垂足為F,
∵△DOF≌△DEF,且E在線段OA上,
∴OF=FE,
由(2)得:OB=2,
∵點D在線段BO上,OD=2DB,
∴OD=OB=
,
∵∠BOA=45°,
∴cos45°= ,
∴OF=ODcos45°= =
,
則OE=2OF=,
∴點E的坐標為(,0);
②如圖3,過D作DF⊥x軸于F,過D作DE∥x軸,交AB于E,連接EF,過E作EG⊥x軸于G,
∴△BDE∽△BOA,
∴ =
,
∵OA=4,
∴DE=,
∵DE∥OA,
∴∠OFD=∠FDE=90°,
∵DE=OF=,DF=DF,
∴△OFD≌△EDF,
同理可得:△EDF≌△FGE,
∴△OFD≌△EDF≌△FGE,
∴OG=OF+FG=OF+DE=+
=
,EG=DF=ODsin45°=
,
∴E的坐標為(,
);
③如圖4,將△DOF沿邊DF翻折,使得O恰好落在AB邊上,記為點E,
過B作BM⊥x軸于M,過E作EN⊥BM于N,
由翻折的性質得:△DOF≌△DEF,
∴OD=DE=,
∵BD=OD=
,
∴在Rt△DBE中,由勾股定理得:BE= =
,
則BN=NE=BEcos45°=×
=
,
OM+NE=2+,BM﹣BN=2﹣
,
∴點E的坐標為:(2+,2﹣
);
ii)當點F在AB上時,
過D作DF∥x軸,交AB于F,連接OF與DA,
∵DF∥x軸,
∴△BDF∽△BOA,
∴ ,
由拋物線的對稱性得:OB=BA,
∴BD=BF,
則∠BDF=∠BFD,∠ODF=∠AFD,
∴OD=OB﹣BD=BA﹣BF=AF,
則△DOF≌△DAF,
∴E和A重合,則點E的坐標為(4,0);
綜上所述,點E的坐標為:(,0)或(
,
)或(2+
,2﹣
)或(4,0).
科目:初中數學 來源: 題型:
【題目】《九章算術》是中國傳統數學最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”
用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門
位于
的中點,南門
位于
的中點,出東門15步的
處有一樹木,求出南門多少步恰好看到位于
處的樹木(即點
在直線
上)?請你計算
的長為__________步.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,
,
,
,動點
從點
出發以
的速度向點
移動,同時動點
從點
出發以
的速度向點
移動,設它們的運動時間為
.
(1)為何值時,
的面積等于
面積的
;
(2)運動幾秒時,與
相似?
(3)在運動過程中,的長度能否為
?試說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年5月,以“尋根國學,傳承文明”為主題的蘭州市第三屆“國學少年強一國學知識挑戰賽”總決賽拉開帷幕,小明晉級了總決賽.比賽過程分兩個環節,參賽選手須在每個環節中各選擇一道題目.
第一環節:寫字注音、成語故事、國學常識、成語接龍(分別用表示);
第二環節:成語聽寫、詩詞對句、經典通讀(分別用表示)
(1)請用樹狀圖或列表的方法表示小明參加總決賽抽取題目的所有可能結果
(2)求小明參加總決賽抽取題目都是成語題目(成語故事、成語接龍、成語聽寫)的概率。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】尺規作圖
任務一:下面是小希設計的“過直線外一點作已知直線的平行線”的尺規作圖過程.
已知:直線l及直線外一點P.
求作:直線PQ,使得PQ∥l.
作法:如圖
①在直線l上取一點O,連接OP,以點O為圓心,OP為半徑畫圓,交直線l與點A和點B;②連接AP,以點B為圓心,AP長為半徑在直線l上方畫弧交⊙O于點Q;
③作直線PQ.
所以直線PQ就是所求作的直線.
根據小希設計的尺規作圖步驟完成下列問題:
(1)在圖1中使用直尺和圓規,補全圖形;(保留作圖痕跡)
(2)證明:PQ∥l
任務二:已知:直線l及直線l外一點M.
請根據下列提供的數學原理,選擇其一,在圖2中使用直尺和圓規作直線MN,使得MN∥l.(保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列條件中不能判定這兩個三角形相似的是( )
A. ∠A=55°,∠D=35°
B. AC=9,BC=12,DF=6,EF=8
C. AC=3,BC=4,DF=6,DE=8
D. AB=10,AC=8,DE=15,EF=9
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋中裝有4個球,分別是紅球和白球,這些球除顏色外都相同,將球攪勻,先從中任意摸出一個球,恰好摸到紅球的概率為.
(1)求口袋中有幾個紅球?
(2)先從中任意摸出一個球,從余下的球中再摸出一個球,請用列表法或樹狀圖法求兩次摸到的球中一個是紅球和一個是白球的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com