【題目】如圖,△ABC中,已知AB=AC,D是AC上的一點,CD=9,BC=15,BD=12.
(1)判斷△BCD的形狀并證明你的結論.
(2)求△ABC的面積.
科目:初中數學 來源: 題型:
【題目】一名足球守門員練習折返跑,從球門線出發,向前記作正數,返回記作負數,他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習過程中,守門員離開球門最遠距離是多少米?
(3)守門員全部練習結束后,他共跑了多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數軸上A,B,C三個點對應的數分別為a,b,x,且A,B到﹣1所對應的點的距離都等于7,點B在點A的右側,
(1)請在數軸上表示點A,B位置,a= ,b= ;
(2)請用含x的代數式表示CB= ;
(3)若點C在點B的左側,且CB=8,點A以每秒2個單位長度的速度沿數軸向右運動,當AC=2AB且點A在B的左側時,求點A移動的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩工程隊維修同一段路面,甲隊先清理路面,乙隊在甲隊清理后鋪設路面.乙隊在中途停工了一段時間,然后按停工前的工作效率繼續工作.在整個工作過程中,甲隊清理完的路面長y(米)與時間x(時)的函數圖象為線段OA,乙隊鋪設完的路面長y(米)與時間x(時)的函數圖象為折線BC-CD-DE,如圖所示,從甲隊開始工作時計時.
(1)分別求線段BC、DE所在直線對應的函數關系式.
(2)當甲隊清理完路面時,求乙隊鋪設完的路面長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側,B點的坐標為(3,0),與y軸交于C(0,﹣3)點,點P是直線BC下方的拋物線上一動點.
(1)求這個二次函數的表達式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:善于思考的小明在解方程組時,采用了一種“整體代換”的解法,解法如下:
解:將方程②8x+20y+2y=10,變形為2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,則y=-1;把y=-1代入①得,x=4,所以方程組的解為:.
請你解決以下問題:
(1)試用小明的“整體代換”的方法解方程組
(2)已知x、y、z,滿足試求z的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,ABCD,延長邊AB到點E,使BE=AB,連接DE、BD和EC,設DE交BC于點O,∠BOD=2∠A,求證:四邊形BECD是矩形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com