【題目】如圖所示,直線AB與x軸交于點A,與y軸交于點C(0,2),且與反比例函數y=﹣ 的圖象在第二象限內交于點B,過點B作BD⊥x軸于點D,OD=2.
(1)求直線AB的解析式;
(2)若點P是線段BD上一點,且△PBC的面積等于3,求點P的坐標.
科目:初中數學 來源: 題型:
【題目】如圖(1),在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(3,0),與y軸交于C(0,3),頂點為D(1,4),對稱軸為DE.
(1)拋物線的解析式是;
(2)如圖(2),點P是AD上一個動點,P′是P關于DE的對稱點,連接PE,過P′作P′F∥PE交x軸于F.設S四邊形EPP′F=y,EF=x,求y關于x的函數關系式,并求y的最大值;
(3)在(1)中的拋物線上是否存在點Q,使△BCQ成為以BC為直角邊的直角三角形?若存在,求出Q的坐標;若不存在.請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動點,則PC+PQ的最小值是( )
A.
B.4
C.
D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在開展“美麗廣西,清潔鄉村”的活動中某鄉鎮計劃購買A、B兩種樹苗共100棵,已知A種樹苗每棵30元,B種樹苗每棵90元.
(1)設購買A種樹苗x棵,購買A、B兩種樹苗的總費用為y元,請你寫出y與x之間的函數關系式(不要求寫出自變量x的取值范圍);
(2)如果購買A、B兩種樹苗的總費用不超過7560元,且B種樹苗的棵數不少于A種樹苗棵數的3倍,那么有哪幾種購買樹苗的方案?
(3)從節約開支的角度考慮,你認為采用哪種方案更合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在開展“美麗廣西,清潔鄉村”的活動中某鄉鎮計劃購買A、B兩種樹苗共100棵,已知A種樹苗每棵30元,B種樹苗每棵90元.
(1)設購買A種樹苗x棵,購買A、B兩種樹苗的總費用為y元,請你寫出y與x之間的函數關系式(不要求寫出自變量x的取值范圍);
(2)如果購買A、B兩種樹苗的總費用不超過7560元,且B種樹苗的棵數不少于A種樹苗棵數的3倍,那么有哪幾種購買樹苗的方案?
(3)從節約開支的角度考慮,你認為采用哪種方案更合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學九年級數學興趣小組想測量建筑物AB的高度.他們在C處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進6米到達D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計,結果精確到0.1米)
(參考數據:sin48°≈ ,tan48°≈
,sin64°≈
,tan64°≈2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關系;
(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設點Q的運動速度為x cm/s,是否存在實數x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com