【題目】如圖,已知等邊三角形OAB與反比例函數y= (k>0,x>0)的圖象交于A、B兩點,將△OAB沿直線OB翻折,得到△OCB,點A的對應點為點C,線段CB交x軸于點D,則
的值為 . (已知sin15°=
)
【答案】
【解析】解:如圖,過O作OM⊥x軸于M,
∵△AOB是等邊三角形,
∴AM=BM,∠AOM=∠BOM=30°,
∴A、B關于直線OM對稱,
∵A、B兩點在反比例函數y= (k>0,x>0)的圖象上,且反比例函數關于直線y=x對稱,
∴直線OM的解析式為:y=x,
∴∠BOD=45°﹣30°=15°,
過B作BF⊥x軸于F,過C作CN⊥x軸于N,
sin∠BOD=sin15°= =
,
∵∠BOC=60°,∠BOD=15°,
∴∠CON=45°,
∴△CNO是等腰直角三角形,
∴CN=ON,
設CN=x,則OC= x,
∴OB= x,
∴ =
,
∴BF= ,
∵BF⊥x軸,CN⊥x軸,
∴BF∥CN,
∴△BDF∽△CDN,
∴ =
=
,
所以答案是: .
【考點精析】認真審題,首先需要了解等邊三角形的性質(等邊三角形的三個角都相等并且每個角都是60°),還要掌握翻折變換(折疊問題)(折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】點P到∠AOB的距離定義如下:點Q為∠AOB的兩邊上的動點,當PQ最小時,我們稱此時PQ的長度為點P到∠AOB的距離,記為d(P,∠AOB).特別的,當點P在∠AOB的邊上時,d(P,∠AOB)=0.在平面直角坐標系xOy中,A(4,0).
(1)如圖1,若M(0,2),N(﹣1,0),則d(M,∠AOB)= , d(N,∠AOB)=;
(2)在正方形OABC中,點B(4,4).如圖2,若點P在直線y=3x+4上,且d(P,∠AOB)=2 ,求點P的坐標;
(3)如圖3,若點P在拋物線y=x2﹣4上,滿足d(P,∠AOB)=2 的點P有個,請你畫出示意圖,并標出點P.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm,花園的面積為S.
(1)求S與x之間的函數表達式;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(含邊界,不考慮樹的粗細),求花園面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,每個小方格都是邊長為1個單位長度的小正方形.
(1)將△ABC向右平移3個單位長度,畫出平移后的△A1B1C1 .
(2)將△ABC繞點O旋轉180°,畫出旋轉后的△A2B2C2 .
(3)畫出一條直線將△AC1A2的面積分成相等的兩部分.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某藍莓種植生產基地產銷兩旺,采摘的藍莓部分加工銷售,部分直接銷售,且當天都能銷售完,直接銷售是40元/斤,加工銷售是130元/斤(不計損耗).已知基地雇傭20名工人,每名工人只能參與采摘和加工中的一項工作,每人每天可以采摘70斤或加工35斤,設安排x名工人采摘藍莓,剩下的工人加工藍莓.
(1)若基地一天的總銷售收入為y元,求y與x的函數關系式;
(2)試求如何分配工人,才能使一天的銷售收入最大?并求出最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司開發出一款新的節能產品,該產品的成本價為6元/件,該產品在正式投放市場前通過代銷點進行了為期一個月(30天)的試營銷,售價為8元/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷售量y(件)與銷售時間x(天)之間的函數關系,已知線段DE表示的函數關系中,時間每增加1天,日銷售量減少5件.
(1)第24天的日銷售量是件,日銷售利潤是元.
(2)求y與x之間的函數關系式,并寫出x的取值范圍;
(3)日銷售利潤不低于640元的天數共有多少天?試銷售期間,日銷售最大利潤是多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com