【題目】某商場購進甲、乙兩種空調共40臺.已知購進一臺甲種空調比購進一臺乙種空調進價多0.2萬元;用36萬元購進乙種空調數量是用18萬元購進甲種空調數量的4倍.請解答下列問題:
(1)求甲、乙兩種空調每臺進價各是多少萬元?
(2)若商場預計投入資金不多于11.5萬元用于購買甲、乙兩種空調,且購進甲種空調至少14臺,商場有哪幾種購進方案?
【答案】(1)甲空調每臺的進價為0.4萬元,則乙空調每臺的進價為0.2萬元;(2)商場共有四種購進方案:①購進甲種空調14臺,乙種空調26臺;②購進甲種空調15臺,乙種空調25臺;③購進甲種空調16臺,乙種空調24臺;④購進甲種空調17臺,乙種空調23臺.
【解析】
(1)設甲空調每臺的進價為x萬元,則乙空調每臺的進價為(x﹣0.2)萬元,根據“用36萬元購進乙種空調數量是用18萬元購進甲種空調數量的4倍”列出方程,解之可得;
(2)設購進甲種空調m臺,則購進乙種空調(40﹣m)臺,由“投入資金不多于11.5萬元”列出關于m的不等式,解之求得m的取值范圍,繼而得到整數m的可能取值,從而可得所有方案.
解:(1)設甲空調每臺的進價為x萬元,則乙空調每臺的進價為(x﹣0.2)萬元,
根據題意,得:,
解得:x=0.4,
經檢驗:x=0.4是原分式方程的解,
所以甲空調每臺的進價為0.4萬元,則乙空調每臺的進價為0.2萬元;
(2)設購進甲種空調m臺,則購進乙種空調(40﹣m)臺,
根據題意,得:0.4m+0.2(40﹣m)≤11.5,
解得:m≤17.5,
又m≥14,
∴14≤m≤17.5,
則整數m的值可以是14,15,16,17,
所以商場共有四種購進方案:
①購進甲種空調14臺,乙種空調26臺;
②購進甲種空調15臺,乙種空調25臺;
③購進甲種空調16臺,乙種空調24臺;
④購進甲種空調17臺,乙種空調23臺.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點A(2,0)的直線l與y軸交于點B,tan∠OAB= ,直線l上的點P位于y軸左側,且到y軸的距離為1.
(1)求直線l的表達式;
(2)若反比例函數y= 的圖象經過點P,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、"10元”、“20元”、“30元”的字樣.規定:顧客在本超市一次性消費滿200元,就可以在箱子里先后摸出兩個小球(每一次摸出后不放回).某顧客剛好消費200元,則該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是 的中點,則下列結論:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系上有點A(1,0),點A第一次跳動至點A1(-1,1),第二次點A1向右跳到A2(2,1),第三次點A2跳到A3(-2,2),第四次點A3向右跳動至點A4(3,2),…,依此規律跳動下去,則點A2 019與點A2 020之間的距離是( )
A.2021B.2020C.2019D.2 018
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠CBD的度數;
(2)當點P運動時,∠APB與∠ADB之間的數量關系是否隨之發生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規律.
(3)當點P運動到使∠ACB=∠ABD時,直接寫出∠ABC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場用36萬元購進A、B兩種商品,銷售完后共獲利6萬元,其進價和售價如下表:
A | B | |
進價(元/件) | 1200 | 1000 |
售價(元/件) | 1380 | 1200 |
(注:獲利=售價-進價)
(1) 該商場購進A、B兩種商品各多少件?
(2) 商場第二次以原進價購進A、B兩種商品.購進B種商品的件數不變,而購進A種商品的件數是第一次的2倍,A種商品按原價出售,而B種商品打折銷售.若兩種商品銷售完畢,要使第二次經營活動獲利不少于81600元,B種商品最低售價為每件多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的周長為30cm,點D、E都在邊BC上,∠ABC的平分線垂直于AE,垂足為Q,∠ACB的平分線垂直于AD,垂足為P,若BC=11cm,則DE的長為____cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】你能化簡(x-1)(x99+x98+x97+…+x+1)嗎?遇到這樣的問題,我們可以先思考一下,從簡單的情形入手,然后歸納出一些方法.
(1)分別化簡下列各式:
①(x-1)(x+1)=___________;
②(x-1)(x2+x+1)=___________;
③(x-1)(x3+x2+1)=___________;
……
由此我們可以得到:(x-1)(x99+x98+x97+…+x+1)=________________.
(2)請你利用上面的結論計算:
299+298+297+…+2+1.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com