精英家教網 > 初中數學 > 題目詳情

【題目】如圖AB⊙O的直徑,PA⊙O相切于點ABP⊙O相交于點D,C⊙O上的一點,分別連接CB、CD,∠BCD60°.

(1)求∠ABD的度數;

(2)AB6,求PD的長度.

【答案】(1)∠ABD=30°;(2)PD=

【解析】

(1)根據圓周角定理得:∠ADB=90°,由同弧所對的圓周角相等和直角三角形的性質可得結論;

(2)如圖1,根據切線的性質可得∠BAP=90°,根據直角三角形30°角的性質可計算AD的長,由勾股定理計算DB的長,由三角函數可得PB的長,從而得PD的長.

(1)如圖,連接AD.

BA是⊙O直徑,

∴∠BDA=90°.

∴∠BAD=C=60°.

∴∠ABD=90°-BAD=90°-60°=30°.

(2)如圖,∵AP是⊙O的切線,

∴∠BAP=90°.

RtBAD中,∵∠ABD=30°,

DA=BA=×6=3.

BD=DA=3

RtBAP中,∵cosABD=

cos30°=

BP=4

PD=BP-BD=4-3=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結論同時成立的是  

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,O為原點,點A(﹣,0),點B(0,1)把△ABO繞點O順時針旋轉,得△A'B'O,點AB旋轉后的對應點為A',B',記旋轉角為α(0°<α<360°).

(1)如圖①,當點A′,B,B′共線時,求AA′的長.

(2)如圖②,當α=90°,求直線ABAB′的交點C的坐標;

(3)當點A′在直線AB上時,求BB′與OA′的交點D的坐標(直接寫出結果即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場有一個可以自由轉動的圓形轉盤(如圖).規定:顧客購物100元以上可以獲得一次轉動轉盤的機會,當轉盤停止時,指針落在哪一個區域就獲得相應的獎品(指針指向兩個扇形的交線時,當作指向右邊的扇形).下表是活動進行中的一組統計數據:

轉動轉盤的次數n

100

150

200

500

800

1000

落在鉛筆的次數m

68

111

136

345

546

701

落在鉛筆的頻率

(結果保留小數點后兩位)

0.68

0.74

0.68

0.69

0.68

0.70

1)轉動該轉盤一次,獲得鉛筆的概率約為_______;(結果保留小數點后一位)

2)鉛筆每只0.5元,飲料每瓶3元,經統計該商場每天約有4000名顧客參加抽獎活動,請計算該商場每天需要支出的獎品費用;

3)在(2)的條件下,該商場想把每天支出的獎品費用控制在3000元左右,則轉盤上“一瓶飲料”區域的圓心角應調整為______度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖所示是一條線段,AB的長為10厘米,MN的長為2厘米,假設可以隨意在這條線段上取一點,求這個點取在線段MN上的概率.

(2)如圖是一個木制圓盤,圖中兩同心圓,其中大圓直徑為20cm,小圓的直徑為10cm,一只小鳥自由自在地在空中飛行,求小鳥停在小圓內(陰影部分)的概率是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=12,經過A,D兩點的⊙O與邊BC相切于點E,則⊙O的半徑為(  )

A. 4 B. C. 5 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數).

(1)求證無論k為何值,方程總有兩個不相等實數根;

(2)已知函數y=x2+(k﹣5)x+1﹣k的圖象不經過第三象限,求k的取值范圍;

(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在二次函數y=-x2bxc中,函數y與自變量x的部分對應值如下表:

x

……

2

0

3

4

……

y

……

7

m

n

7

……

m、n的大小關系為( )

A. mn B. mn C. mn D. 無法確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】反比例函數y=(k為常數,且k≠0)的圖象經過點A(1,3)、B(3,m).

(1)求反比例函數的解析式及B點的坐標;

(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视